import urllib import warnings from pathlib import Path import os import gradio as gr from langchain import PromptTemplate from langchain.chains.question_answering import load_qa_chain from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_google_genai import ChatGoogleGenerativeAI import google.generativeai as genai import pandas as pd from dotenv import load_dotenv load_dotenv() # take environment variables from .env. # Fungsi untuk inisialisasi def initialize(link, question): # Konfigurasikan kunci API os.getenv("GOOGLE_API_KEY") genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) model = genai.GenerativeModel('gemini-pro') model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) prompt_template = """Answer the question as precise as possible using the provided context. If the answer is not contained in the context, say "answer not available in context" \n\n Context: \n {context}?\n Question: \n {question} \n Answer: """ prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) # Download PDF dari URL yang diberikan pdf_file = "downloaded_paper.pdf" urllib.request.urlretrieve(link, pdf_file) # Load the PDF pdf_loader = PyPDFLoader(pdf_file) pages = pdf_loader.load_and_split() # Process the file content and use it as the context context = "\n".join(str(page.page_content) for page in pages[:30]) stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) stuff_answer = stuff_chain({"input_documents": pages, "question": question, "context": context}, return_only_outputs=True) return stuff_answer['output_text'] # Membuat antarmuka pengguna with gr.Blocks() as demo: gr.Markdown('# RAG Q&A Bot with Gemini - Pro') gr.Markdown('### Hands-On LLM') link_input = gr.Textbox(label="Input Link Paper atau PDF", placeholder="Paste PDF disini") question_input = gr.Textbox(label="Tanyakan Dokumen", placeholder="Tanyakan Dokumen:") chatbot = gr.Textbox(label="Answer - GeminiPro") ask_button = gr.Button("Ask Question") ask_button.click(initialize, inputs=[link_input, question_input], outputs=[chatbot]) # Meluncurkan antarmuka pengguna demo.queue().launch(debug=True)