import torch import torch.nn as nn import torch.nn.functional as F import math class KANLinear(nn.Module): def __init__(self, in_features, out_features, grid_size=5, spline_order=3, scale_noise=0.1, scale_base=1.0, scale_spline=1.0, enable_standalone_scale_spline=True, base_activation=nn.SiLU, grid_eps=0.02, grid_range=[-1, 1]): super(KANLinear, self).__init__() self.in_features = in_features self.out_features = out_features self.grid_size = grid_size self.spline_order = spline_order h = (grid_range[1] - grid_range[0]) / grid_size grid = ((torch.arange(-spline_order, grid_size + spline_order + 1) * h + grid_range[0]).expand(in_features, -1).contiguous()) self.register_buffer("grid", grid) self.base_weight = nn.Parameter(torch.Tensor(out_features, in_features)) self.spline_weight = nn.Parameter(torch.Tensor(out_features, in_features, grid_size + spline_order)) if enable_standalone_scale_spline: self.spline_scaler = nn.Parameter(torch.Tensor(out_features, in_features)) self.scale_noise = scale_noise self.scale_base = scale_base self.scale_spline = scale_spline self.enable_standalone_scale_spline = enable_standalone_scale_spline self.base_activation = base_activation() self.grid_eps = grid_eps self.reset_parameters() def reset_parameters(self): nn.init.kaiming_uniform_(self.base_weight, a=math.sqrt(5) * self.scale_base) with torch.no_grad(): noise = ((torch.rand(self.grid_size + 1, self.in_features, self.out_features) - 1 / 2) * self.scale_noise / self.grid_size) self.spline_weight.data.copy_((self.scale_spline if not self.enable_standalone_scale_spline else 1.0) * self.curve2coeff(self.grid.T[self.spline_order : -self.spline_order], noise)) if self.enable_standalone_scale_spline: nn.init.kaiming_uniform_(self.spline_scaler, a=math.sqrt(5) * self.scale_spline) def b_splines(self, x: torch.Tensor): assert x.dim() == 2 and x.size(1) == self.in_features grid = self.grid x = x.unsqueeze(-1) bases = ((x >= grid[:, :-1]) & (x < grid[:, 1:])).to(x.dtype) for k in range(1, self.spline_order + 1): bases = ((x - grid[:, : -(k + 1)]) / (grid[:, k:-1] - grid[:, : -(k + 1)]) * bases[:, :, :-1]) + ((grid[:, k + 1 :] - x) / (grid[:, k + 1 :] - grid[:, 1:(-k)]) * bases[:, :, 1:]) assert bases.size() == (x.size(0), self.in_features, self.grid_size + self.spline_order) return bases.contiguous() def curve2coeff(self, x: torch.Tensor, y: torch.Tensor): assert x.dim() == 2 and x.size(1) == self.in_features assert y.size() == (x.size(0), self.in_features, self.out_features) A = self.b_splines(x).transpose(0, 1) B = y.transpose(0, 1) solution = torch.linalg.lstsq(A, B).solution result = solution.permute(2, 0, 1) assert result.size() == (self.out_features, self.in_features, self.grid_size + self.spline_order) return result.contiguous() @property def scaled_spline_weight(self): return self.spline_weight * (self.spline_scaler.unsqueeze(-1) if self.enable_standalone_scale_spline else 1.0) def forward(self, x: torch.Tensor): assert x.dim() == 2 and x.size(1) == self.in_features base_output = F.linear(self.base_activation(x), self.base_weight) spline_output = F.linear(self.b_splines(x).view(x.size(0), -1), self.scaled_spline_weight.view(self.out_features, -1)) return base_output + spline_output @torch.no_grad() def update_grid(self, x: torch.Tensor, margin=0.01): assert x.dim() == 2 and x.size(1) == self.in_features batch = x.size(0) splines = self.b_splines(x).permute(1, 0, 2) orig_coeff = self.scaled_spline_weight.permute(1, 2, 0) unreduced_spline_output = torch.bmm(splines, orig_coeff).permute(1, 0, 2) x_sorted = torch.sort(x, dim=0)[0] grid_adaptive = x_sorted[torch.linspace(0, batch - 1, self.grid_size + 1, dtype=torch.int64, device=x.device)] uniform_step = (x_sorted[-1] - x_sorted[0] + 2 * margin) / self.grid_size grid_uniform = (torch.arange(self.grid_size + 1, dtype=torch.float32, device=x.device).unsqueeze(1) * uniform_step + x_sorted[0] - margin) grid = self.grid_eps * grid_uniform + (1 - self.grid_eps) * grid_adaptive grid = torch.cat([grid[:1] - uniform_step * torch.arange(self.spline_order, 0, -1, device=x.device).unsqueeze(1), grid, grid[-1:] + uniform_step * torch.arange(1, self.spline_order + 1, device=x.device).unsqueeze(1)], dim=0) self.grid.copy_(grid.T) self.spline_weight.data.copy_(self.curve2coeff(x, unreduced_spline_output)) def regularization_loss(self, regularize_activation=1.0, regularize_entropy=1.0): l1_fake = self.spline_weight.abs().mean(-1) regularization_loss_activation = l1_fake.sum() p = l1_fake / regularization_loss_activation regularization_loss_entropy = -torch.sum(p * p.log()) return regularize_activation * regularization_loss_activation + regularize_entropy * regularization_loss_entropy