import cv2 import torch import onnx import onnxruntime import numpy as np import time # codeformer converted to onnx # using https://github.com/redthing1/CodeFormer class CodeFormerEnhancer: def __init__(self, model_path="codeformer.onnx", device="cpu"): model = onnx.load(model_path) session_options = onnxruntime.SessionOptions() session_options.graph_optimization_level = ( onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL ) providers = ["CPUExecutionProvider"] if device == "cuda": providers = [ ("CUDAExecutionProvider", {"cudnn_conv_algo_search": "DEFAULT"}), "CPUExecutionProvider", ] self.session = onnxruntime.InferenceSession( model_path, sess_options=session_options, providers=providers ) def enhance(self, img, w=0.9): img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR) img = img.astype(np.float32)[:, :, ::-1] / 255.0 img = img.transpose((2, 0, 1)) nrm_mean = np.array([0.5, 0.5, 0.5]).reshape((-1, 1, 1)) nrm_std = np.array([0.5, 0.5, 0.5]).reshape((-1, 1, 1)) img = (img - nrm_mean) / nrm_std img = np.expand_dims(img, axis=0) out = self.session.run( None, {"x": img.astype(np.float32), "w": np.array([w], dtype=np.double)} )[0] out = (out[0].transpose(1, 2, 0).clip(-1, 1) + 1) * 0.5 out = (out * 255)[:, :, ::-1] return out.astype("uint8")