import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load the tokenizer and model from Hugging Face model_name = "waterdrops0/mistral-nouns500" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16) def generate_text(prompt, max_length=50, temperature=0.7, repetition_penalty=1.2): # Encode the input prompt inputs = tokenizer.encode(prompt, return_tensors="pt").to(model.device) # Generate output based on the prompt with repetition penalty outputs = model.generate( inputs, max_length=max_length + inputs.shape[1], # Ensuring generated text extends beyond the input prompt temperature=temperature, repetition_penalty=repetition_penalty, # Add repetition penalty do_sample=True, top_p=0.95, top_k=60 ) # Decode the generated tokens, skipping the input tokens generated_tokens = outputs[0, inputs.shape[1]:] # Only get the new tokens generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True) return generated_text # Update the Gradio interface to include repetition penalty slider iface = gr.Interface( fn=generate_text, inputs=[ gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt"), gr.Slider(10, 200, step=10, value=50, label="Max Length"), gr.Slider(0.1, 1.0, step=0.1, value=0.7, label="Temperature"), gr.Slider(1.0, 2.0, step=0.1, value=1.2, label="Repetition Penalty") # Add a slider for repetition penalty ], outputs=gr.Textbox(label="Generated Text"), title="Mistral 7B Nouns Model", description="Generate text using the fine-tuned Mistral 7B model with repetition penalty." ) if __name__ == "__main__": iface.launch()