Spaces:
Sleeping
Sleeping
| import os | |
| import sys | |
| from typing import Optional | |
| import numpy as np | |
| import torch | |
| from torch import nn | |
| from transformers import set_seed | |
| import wandb | |
| import logging | |
| import copy | |
| from .vits_config import VitsConfig, VitsPreTrainedModel | |
| from .feature_extraction import VitsFeatureExtractor | |
| from .vits_output import PosteriorDecoderModelOutput | |
| from .dataset_features_collector import FeaturesCollectionDataset | |
| from .posterior_encoder import VitsPosteriorEncoder | |
| from .decoder import VitsHifiGan | |
| class PosteriorDecoderModel(torch.nn.Module): | |
| def __init__(self, config,posterior_encoder,decoder,device=None): | |
| super().__init__() | |
| if device: | |
| self.device = device | |
| else: | |
| self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| self.config = copy.deepcopy(config) | |
| self.posterior_encoder = copy.deepcopy(posterior_encoder) | |
| self.decoder = copy.deepcopy(decoder) | |
| if config.num_speakers > 1: | |
| self.embed_speaker = nn.Embedding(config.num_speakers, | |
| config.speaker_embedding_size | |
| ) | |
| self.sampling_rate = config.sampling_rate | |
| self.speaking_rate = config.speaking_rate | |
| self.noise_scale = config.noise_scale | |
| self.noise_scale_duration = config.noise_scale_duration | |
| self.segment_size = self.config.segment_size // self.config.hop_length | |
| self.to(self.device) | |
| #.................................... | |
| def slice_segments(self,hidden_states, ids_str, segment_size=4): | |
| batch_size, channels, _ = hidden_states.shape | |
| # 1d tensor containing the indices to keep | |
| indices = torch.arange(segment_size).to(ids_str.device) | |
| # extend the indices to match the shape of hidden_states | |
| indices = indices.view(1, 1, -1).expand(batch_size, channels, -1) | |
| # offset indices with ids_str | |
| indices = indices + ids_str.view(-1, 1, 1) | |
| # gather indices | |
| output = torch.gather(hidden_states, dim=2, index=indices) | |
| return output | |
| #.................................... | |
| def rand_slice_segments(self,hidden_states, sample_lengths=None, segment_size=4): | |
| batch_size, _, seq_len = hidden_states.size() | |
| if sample_lengths is None: | |
| sample_lengths = seq_len | |
| ids_str_max = sample_lengths - segment_size + 1 | |
| ids_str = (torch.rand([batch_size]).to(device=hidden_states.device) * ids_str_max).to(dtype=torch.long) | |
| ret = self.slice_segments(hidden_states, ids_str, segment_size) | |
| return ret, ids_str | |
| #.................................... | |
| def forward( | |
| self, | |
| labels: Optional[torch.FloatTensor] = None, | |
| labels_attention_mask: Optional[torch.Tensor] = None, | |
| speaker_id: Optional[int] = None, | |
| return_dict: Optional[bool] = True, | |
| ) : | |
| if self.config.num_speakers > 1 and speaker_id is not None: | |
| if isinstance(speaker_id, int): | |
| speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device) | |
| elif isinstance(speaker_id, (list, tuple, np.ndarray)): | |
| speaker_id = torch.tensor(speaker_id, device=self.device) | |
| if not ((0 <= speaker_id).all() and (speaker_id < self.config.num_speakers).all()).item(): | |
| raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.") | |
| if not (len(speaker_id) == 1 or len(speaker_id == len(labels))): | |
| raise ValueError( | |
| f"You passed {len(speaker_id)} `speaker_id` but you should either pass one speaker id or `batch_size` `speaker_id`." | |
| ) | |
| speaker_embeddings = self.embed_speaker(speaker_id).unsqueeze(-1) | |
| else: | |
| speaker_embeddings = None | |
| if labels_attention_mask is not None: | |
| labels_padding_mask = labels_attention_mask.unsqueeze(1).float() | |
| else: | |
| labels_attention_mask = torch.ones((labels.shape[0], labels.shape[2])).float().to(self.device) | |
| labels_padding_mask = labels_attention_mask.unsqueeze(1) | |
| posterior_latents, posterior_means, posterior_log_variances = self.posterior_encoder( | |
| labels, labels_padding_mask, speaker_embeddings | |
| ) | |
| label_lengths = labels_attention_mask.sum(dim=1) | |
| latents_slice, ids_slice = self.rand_slice_segments(posterior_latents, | |
| label_lengths, | |
| segment_size=self.segment_size | |
| ) | |
| waveform = self.decoder(latents_slice, speaker_embeddings) | |
| if not return_dict: | |
| outputs = ( | |
| labels_padding_mask, | |
| posterior_latents, | |
| posterior_means, | |
| posterior_log_variances, | |
| latents_slice, | |
| ids_slice, | |
| waveform, | |
| ) | |
| return outputs | |
| return PosteriorDecoderModelOutput( | |
| labels_padding_mask = labels_padding_mask, | |
| posterior_latents = posterior_latents, | |
| posterior_means = posterior_means, | |
| posterior_log_variances = posterior_log_variances, | |
| latents_slice = latents_slice, | |
| ids_slice = ids_slice, | |
| waveform = waveform, | |
| ) | |
| #.................................... | |
| def trainer(self, | |
| train_dataset_dir = None, | |
| eval_dataset_dir = None, | |
| full_generation_dir = None, | |
| feature_extractor = VitsFeatureExtractor(), | |
| training_args = None, | |
| full_generation_sample_index= 0, | |
| project_name = "Posterior_Decoder_Finetuning", | |
| wandbKey = "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79", | |
| ): | |
| os.makedirs(training_args.output_dir,exist_ok=True) | |
| logger = logging.getLogger(f"{__name__} Training") | |
| log_level = training_args.get_process_log_level() | |
| logger.setLevel(log_level) | |
| wandb.login(key= wandbKey) | |
| wandb.init(project= project_name,config = training_args.to_dict()) | |
| set_seed(training_args.seed) | |
| # Apply Weight Norm Decoder | |
| self.decoder.apply_weight_norm() | |
| # Save Config | |
| self.config.save_pretrained(training_args.output_dir) | |
| train_dataset = FeaturesCollectionDataset(dataset_dir = train_dataset_dir, | |
| device = self.device | |
| ) | |
| eval_dataset = None | |
| if training_args.do_eval: | |
| eval_dataset = FeaturesCollectionDataset(dataset_dir = eval_dataset_dir, | |
| device = self.device | |
| ) | |
| full_generation_dataset = FeaturesCollectionDataset(dataset_dir = full_generation_dir, | |
| device = self.device | |
| ) | |
| self.full_generation_sample = full_generation_dataset[full_generation_sample_index] | |
| # init optimizer, lr_scheduler | |
| optimizer = torch.optim.AdamW( | |
| self.parameters(), | |
| training_args.learning_rate, | |
| betas=[training_args.adam_beta1, training_args.adam_beta2], | |
| eps=training_args.adam_epsilon, | |
| ) | |
| lr_scheduler = torch.optim.lr_scheduler.ExponentialLR( | |
| optimizer, gamma=training_args.lr_decay, last_epoch=-1 | |
| ) | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num Epochs = {training_args.num_train_epochs}") | |
| #.......................loop training............................ | |
| global_step = 0 | |
| for epoch in range(training_args.num_train_epochs): | |
| train_losses_sum = 0 | |
| lr_scheduler.step() | |
| for step, batch in enumerate(train_dataset): | |
| # forward through model | |
| outputs = self.forward( | |
| labels=batch["labels"], | |
| labels_attention_mask=batch["labels_attention_mask"], | |
| speaker_id=batch["speaker_id"] | |
| ) | |
| mel_scaled_labels = batch["mel_scaled_input_features"] | |
| mel_scaled_target = self.slice_segments(mel_scaled_labels, outputs.ids_slice,self.segment_size) | |
| mel_scaled_generation = feature_extractor._torch_extract_fbank_features(outputs.waveform.squeeze(1))[1] | |
| target_waveform = batch["waveform"].transpose(1, 2) | |
| target_waveform = self.slice_segments( | |
| target_waveform, | |
| outputs.ids_slice * feature_extractor.hop_length, | |
| self.config.segment_size | |
| ) | |
| # backpropagate | |
| loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation) | |
| loss = loss_mel.detach().item() | |
| train_losses_sum = train_losses_sum + loss | |
| loss_mel.backward() | |
| optimizer.step() | |
| optimizer.zero_grad() | |
| print(f"TRAINIG - batch {step}, waveform {(batch['waveform'].shape)}, step_loss_mel {loss}, lr {lr_scheduler.get_last_lr()[0]}... ") | |
| global_step +=1 | |
| # validation | |
| do_eval = training_args.do_eval and (global_step % training_args.eval_steps == 0) | |
| if do_eval: | |
| logger.info("Running validation... ") | |
| eval_losses_sum = 0 | |
| for step, batch in enumerate(eval_dataset): | |
| with torch.no_grad(): | |
| outputs = self.forward( | |
| labels=batch["labels"], | |
| labels_attention_mask=batch["labels_attention_mask"], | |
| speaker_id=batch["speaker_id"] | |
| ) | |
| mel_scaled_labels = batch["mel_scaled_input_features"] | |
| mel_scaled_target = self.slice_segments(mel_scaled_labels, outputs.ids_slice,self.segment_size) | |
| mel_scaled_generation = feature_extractor._torch_extract_fbank_features(outputs.waveform.squeeze(1))[1] | |
| loss = loss_mel.detach().item() | |
| eval_losses_sum +=loss | |
| loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation) | |
| print(f"VALIDATION - batch {step}, waveform {(batch['waveform'].shape)}, step_loss_mel {loss} ... ") | |
| with torch.no_grad(): | |
| full_generation_sample = self.full_generation_sample | |
| full_generation =self.forward( | |
| labels=full_generation_sample["labels"], | |
| labels_attention_mask=full_generation_sample["labels_attention_mask"], | |
| speaker_id=full_generation_sample["speaker_id"] | |
| ) | |
| full_generation_waveform = full_generation.waveform.cpu().numpy() | |
| wandb.log({ | |
| "eval_losses": eval_losses_sum, | |
| "full generations samples": [ | |
| wandb.Audio(w.reshape(-1), caption=f"Full generation sample {epoch}", sample_rate=self.sampling_rate) | |
| for w in full_generation_waveform],}) | |
| wandb.log({"train_losses":train_losses_sum}) | |
| # add weight norms | |
| self.decoder.remove_weight_norm() | |
| torch.save(self.posterior_encoder.state_dict(), os.path.join(training_args.output_dir,"posterior_encoder.pt")) | |
| torch.save(self.decoder.state_dict(), os.path.join(training_args.output_dir,"decoder.pt")) | |
| logger.info("Running final full generations samples... ") | |
| with torch.no_grad(): | |
| full_generation_sample = self.full_generation_sample | |
| full_generation = self.forward( | |
| labels=full_generation_sample["labels"], | |
| labels_attention_mask=full_generation_sample["labels_attention_mask"], | |
| speaker_id=full_generation_sample["speaker_id"] | |
| ) | |
| full_generation_waveform = full_generation.waveform.cpu().numpy() | |
| wandb.log({"eval_losses": eval_losses_sum, | |
| "full generations samples": [ | |
| wandb.Audio(w.reshape(-1), caption=f"Full generation sample {epoch}", | |
| sample_rate=self.sampling_rate) for w in full_generation_waveform], | |
| }) | |
| logger.info("***** Training / Inference Done *****") | |
| #.................................... | |
| #.................................... | |