#%% import pandas as pd import numpy as np import torch from sentence_transformers.util import cos_sim from sentence_transformers import SentenceTransformer import gradio as gr #%% etalon = pd.read_csv("etalon_prod.csv") df = pd.read_csv("preprocessed_train_classify_rec_spec_filtered_by_etalon.csv") df = df[df['is_match'] == 1] model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2').to("cuda") device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') unique_complaints = df['Жалобы'].values.tolist() with open("embeddings.npy", 'rb') as f: unique_complaints_embeddings_st = np.load(f) def get_recommend(user_input, top_k_spec = 3, top_k_services = 10, treshold = 0.8): cols_for_top_k = ["Специальность врача", "Рекомендуемые специалисты"] usr_embeddings = model.encode(user_input) cos_similarity = cos_sim(usr_embeddings, unique_complaints_embeddings_st).detach().numpy() sorted_idx = cos_similarity[0].argsort()[::-1] cos_similarity.sort() cos_similarity = cos_similarity[0][::-1] sorted_df = df.loc[sorted_idx].copy() sorted_df['cos_sim'] = cos_similarity sorted_df = sorted_df[sorted_df['cos_sim'] > treshold] result = {} for col in cols_for_top_k: result[col] = sorted_df[col].value_counts()[:top_k_spec].index.tolist() result['Жалобы'] = sorted_df['Жалобы'].value_counts()[:top_k_services].index.tolist() lst = [] categories = ['Инструментальная диагностика', 'Лабораторная диагностика'] for category in categories: list_top_k_services = sorted_df[sorted_df['preds'] == category]['Рекомендации по обследованию'].value_counts()[:top_k_services].index.tolist() lst.append({category:list_top_k_services}) result['Рекомендации по обследованию'] = lst return result #%% gradio_app = gr.Interface( get_recommend, inputs='text', outputs=gr.JSON(label='s'), # title="Предсказание топ-10 наиболее схожих услуг", description="Введите услугу:" ) if __name__ == "__main__": gradio_app.launch() # %%