# Thank you code from https://huggingface.co/spaces/gokaygokay/Gemma-2-llamacpp #import spaces import os import json import subprocess from llama_cpp import Llama from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType from llama_cpp_agent.providers import LlamaCppPythonProvider from llama_cpp_agent.chat_history import BasicChatHistory from llama_cpp_agent.chat_history.messages import Roles import gradio as gr from huggingface_hub import hf_hub_download # huggingface_token = os.getenv("HUGGINGFACE_TOKEN") hf_hub_download( repo_id="wannaphong/KhanomTanLLM-1B-Instruct-Q2_K-GGUF", filename="khanomtanllm-1b-instruct-q2_k.gguf", local_dir="./models" ) hf_hub_download( repo_id="wannaphong/KhanomTanLLM-3B-Instruct-Q2_K-GGUF", filename="khanomtanllm-3b-instruct-q2_k.gguf", local_dir="./models" ) # hf_hub_download( # repo_id="google/gemma-2-2b-it-GGUF", # filename="2b_it_v2.gguf", # local_dir="./models", # token=huggingface_token # ) llm = None llm_model = None #@spaces.GPU(duration=120) def respond( message, history: list[tuple[str, str]], model, system_message, max_tokens, temperature, min_p, top_p, top_k, repeat_penalty, ): chat_template = MessagesFormatterType.GEMMA_2 global llm global llm_model if llm is None or llm_model != model: llm = Llama( model_path=f"models/{model}", flash_attn=True, #n_gpu_layers=81, n_batch=1024, n_ctx=2048, ) llm_model = model provider = LlamaCppPythonProvider(llm) agent = LlamaCppAgent( provider, system_prompt=f"{system_message}", predefined_messages_formatter_type=chat_template, debug_output=True ) settings = provider.get_provider_default_settings() settings.temperature = temperature settings.top_k = top_k settings.top_p = top_p settings.min_p = min_p settings.max_tokens = max_tokens settings.repeat_penalty = repeat_penalty settings.stream = True messages = BasicChatHistory() for msn in history: user = { 'role': Roles.user, 'content': msn[0] } assistant = { 'role': Roles.assistant, 'content': msn[1] } messages.add_message(user) messages.add_message(assistant) stream = agent.get_chat_response( message, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True, print_output=False ) outputs = "" for output in stream: outputs += output.replace("<|assistant|>","") yield outputs description = """ """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Dropdown([ 'khanomtanllm-1b-instruct-q2_k.gguf', 'khanomtanllm-3b-instruct-q2_k.gguf', ], value="khanomtanllm-1b-instruct-q2_k.gguf", label="Model" ), gr.Textbox(value="You are a helpful assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=2.0, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.7, step=0.05, label="min-p", ), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p", ), gr.Slider( minimum=0, maximum=100, value=40, step=1, label="Top-k", ), gr.Slider( minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty", ), ], retry_btn="Retry", undo_btn="Undo", clear_btn="Clear", submit_btn="Send", title="Chat with KhanomTanLLM using llama.cpp", description=description, chatbot=gr.Chatbot( scale=1, likeable=False, show_copy_button=True ) ) if __name__ == "__main__": demo.launch()