from typing import List, Tuple, Dict, Generator from langchain.llms import OpenAI import gradio as gr model_name = "gpt-3.5-turbo" LLM = OpenAI(model_name=model_name, temperature=0.1) def create_history_messages(history: List[Tuple[str, str]]) -> List[dict]: history_messages = [{"role": "user", "content": m[0]} for m in history] history_messages.extend([{"role": "assistant", "content": m[1]} for m in history]) return history_messages def create_formatted_history(history_messages: List[dict]) -> List[Tuple[str, str]]: formatted_history = [] user_messages = [] assistant_messages = [] for message in history_messages: if message["role"] == "user": user_messages.append(message["content"]) elif message["role"] == "assistant": assistant_messages.append(message["content"]) if user_messages and assistant_messages: formatted_history.append( ("".join(user_messages), "".join(assistant_messages)) ) user_messages = [] assistant_messages = [] # append any remaining messages if user_messages: formatted_history.append(("".join(user_messages), None)) elif assistant_messages: formatted_history.append((None, "".join(assistant_messages))) return formatted_history def chat( message: str, state: List[Dict[str, str]], client = LLM.client ) -> Generator[Tuple[List[Tuple[str, str]], List[Dict[str, str]]], None, None]: history_messages = state if history_messages == None: history_messages = [] history_messages.append({"role": "system", "content":"用中文回答问题"}) history_messages.append({"role": "user", "content": message}) # We have no content for the assistant's response yet but we will update this: history_messages.append({"role": "assistant", "content": ""}) response_message = "" chat_generator = client.create( messages=history_messages, stream=True, model=model_name ) for chunk in chat_generator: if "choices" in chunk: for choice in chunk["choices"]: if "delta" in choice and "content" in choice["delta"]: new_token = choice["delta"]["content"] # Add the latest token: response_message += new_token # Update the assistant's response in our model: history_messages[-1]["content"] = response_message if "finish_reason" in choice and choice["finish_reason"] == "stop": break formatted_history = create_formatted_history(history_messages) yield formatted_history, history_messages chatbot = gr.Chatbot(label="Chat").style(color_map=("yellow", "purple")) iface = gr.Interface( fn=chat, inputs=[ gr.Textbox(placeholder="在这里数据您的问题", label="Message"), "state", ], outputs=[chatbot, "state"], allow_flagging="never", ) iface.queue().launch()