import os import openai import tiktoken openai.api_key = os.getenv("OPENAI_API_KEY") class Conversation: def __init__(self, prompt, model="gpt-3.5-turbo", temperature=0.8, max_tokens=250): self.prompt = prompt self.model = model self.temperature = temperature self.max_tokens = max_tokens self._init_messages() def _init_messages(self): self.messages = [{"role": "system", "content": self.prompt}] def reset(self): self._init_messages() def ask(self, question, pprint=False): self.messages.append({"role": "user", "content": question}) if self.num_tokens(self.messages, self.model) >= self.max_tokens: if len(self.messages) > 3: self.messages = self.messages[:1] + self.messages[3:] # remove the first user message else: return "Error: max tokens exceeded." try: response = openai.ChatCompletion.create( model=self.model, messages=self.messages ) except Exception as e: return e if pprint: print(f"tiktoken: {self.num_tokens(self.messages, self.model)}\ntokens: {response['usage']}") assistant_message = response["choices"][0]["message"]["content"] self.messages.append({"role": "assistant", "content": assistant_message}) return assistant_message def num_tokens(self, messages, model): """Returns the number of tokens used by a list of messages.""" try: encoding = tiktoken.encoding_for_model(model) except KeyError: print("Warning: model not found. Using cl100k_base encoding.") encoding = tiktoken.get_encoding("cl100k_base") if model == "gpt-3.5-turbo": print("Warning: gpt-3.5-turbo may change over time. Returning num tokens assuming gpt-3.5-turbo-0301.") return self.num_tokens(messages, model="gpt-3.5-turbo-0301") elif model == "gpt-4": print("Warning: gpt-4 may change over time. Returning num tokens assuming gpt-4-0314.") return self.num_tokens(messages, model="gpt-4-0314") elif model == "gpt-3.5-turbo-0301": tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n tokens_per_name = -1 # if there's a name, the role is omitted elif model == "gpt-4-0314": tokens_per_message = 3 tokens_per_name = 1 else: raise NotImplementedError(f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""") num_tokens = 0 for message in messages: num_tokens += tokens_per_message for key, value in message.items(): num_tokens += len(encoding.encode(value)) if key == "name": num_tokens += tokens_per_name num_tokens += 3 # every reply is primed with <|start|>assistant<|message|> return num_tokens import gradio as gr system_prompt_foodie = "您是一名美食家,帮助别人了解美食的信息,回答要简洁有效并控制在100字左右。" conv = Conversation(system_prompt_foodie, max_tokens=1024) with gr.Blocks(title="ChatGPT 助手") as demo: chatbot = gr.Chatbot(elem_id="chatbot")#.style(height=700) msg = gr.Textbox(show_label=False).style(container=False) clear = gr.Button("Clear") def ask(message, chat_history): bot_message = conv.ask(message) chat_history.append((message, bot_message)) return "", chat_history msg.submit(ask, [msg, chatbot], [msg, chatbot]) clear.click(lambda: conv.reset(), None, chatbot, queue=False) demo.launch()