# Copyright (c) Meta Platforms, Inc. and affiliates. # Adapted from Hierarchical-Localization, Paul-Edouard Sarlin, ETH Zurich # https://github.com/cvg/Hierarchical-Localization/blob/master/hloc/utils/viz.py # Released under the Apache License 2.0 import matplotlib import matplotlib.patheffects as path_effects import matplotlib.pyplot as plt import numpy as np def plot_images(imgs, titles=None, cmaps="gray", dpi=100, pad=0.5, adaptive=True): """Plot a set of images horizontally. Args: imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W). titles: a list of strings, as titles for each image. cmaps: colormaps for monochrome images. adaptive: whether the figure size should fit the image aspect ratios. """ n = len(imgs) if not isinstance(cmaps, (list, tuple)): cmaps = [cmaps] * n if adaptive: ratios = [i.shape[1] / i.shape[0] for i in imgs] # W / H else: ratios = [4 / 3] * n figsize = [sum(ratios) * 4.5, 4.5] fig, ax = plt.subplots( 1, n, figsize=figsize, dpi=dpi, gridspec_kw={"width_ratios": ratios} ) if n == 1: ax = [ax] for i in range(n): ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i])) ax[i].get_yaxis().set_ticks([]) ax[i].get_xaxis().set_ticks([]) ax[i].set_axis_off() for spine in ax[i].spines.values(): # remove frame spine.set_visible(False) if titles: ax[i].set_title(titles[i]) fig.tight_layout(pad=pad) return fig def plot_keypoints(kpts, colors="lime", ps=4): """Plot keypoints for existing images. Args: kpts: list of ndarrays of size (N, 2). colors: string, or list of list of tuples (one for each keypoints). ps: size of the keypoints as float. """ if not isinstance(colors, list): colors = [colors] * len(kpts) axes = plt.gcf().axes for a, k, c in zip(axes, kpts, colors): a.scatter(k[:, 0], k[:, 1], c=c, s=ps, linewidths=0) def plot_matches(kpts0, kpts1, color=None, lw=1.5, ps=4, indices=(0, 1), a=1.0): """Plot matches for a pair of existing images. Args: kpts0, kpts1: corresponding keypoints of size (N, 2). color: color of each match, string or RGB tuple. Random if not given. lw: width of the lines. ps: size of the end points (no endpoint if ps=0) indices: indices of the images to draw the matches on. a: alpha opacity of the match lines. """ fig = plt.gcf() ax = fig.axes assert len(ax) > max(indices) ax0, ax1 = ax[indices[0]], ax[indices[1]] fig.canvas.draw() assert len(kpts0) == len(kpts1) if color is None: color = matplotlib.cm.hsv(np.random.rand(len(kpts0))).tolist() elif len(color) > 0 and not isinstance(color[0], (tuple, list)): color = [color] * len(kpts0) if lw > 0: # transform the points into the figure coordinate system transFigure = fig.transFigure.inverted() fkpts0 = transFigure.transform(ax0.transData.transform(kpts0)) fkpts1 = transFigure.transform(ax1.transData.transform(kpts1)) fig.lines += [ matplotlib.lines.Line2D( (fkpts0[i, 0], fkpts1[i, 0]), (fkpts0[i, 1], fkpts1[i, 1]), zorder=1, transform=fig.transFigure, c=color[i], linewidth=lw, alpha=a, ) for i in range(len(kpts0)) ] # freeze the axes to prevent the transform to change ax0.autoscale(enable=False) ax1.autoscale(enable=False) if ps > 0: ax0.scatter(kpts0[:, 0], kpts0[:, 1], c=color, s=ps) ax1.scatter(kpts1[:, 0], kpts1[:, 1], c=color, s=ps) def add_text( idx, text, pos=(0.01, 0.99), fs=15, color="w", lcolor="k", lwidth=2, ha="left", va="top", normalized=True, zorder=3, ): ax = plt.gcf().axes[idx] tfm = ax.transAxes if normalized else ax.transData t = ax.text( *pos, text, fontsize=fs, ha=ha, va=va, color=color, transform=tfm, clip_on=True, zorder=zorder, ) if lcolor is not None: t.set_path_effects( [ path_effects.Stroke(linewidth=lwidth, foreground=lcolor), path_effects.Normal(), ] ) def save_plot(path, **kw): """Save the current figure without any white margin.""" plt.savefig(path, bbox_inches="tight", pad_inches=0, **kw) def features_to_RGB(*Fs, masks=None, skip=1): """Project a list of d-dimensional feature maps to RGB colors using PCA.""" from sklearn.decomposition import PCA def normalize(x): return x / np.linalg.norm(x, axis=-1, keepdims=True) if masks is not None: assert len(Fs) == len(masks) flatten = [] for i, F in enumerate(Fs): c, h, w = F.shape F = np.rollaxis(F, 0, 3) F_flat = F.reshape(-1, c) if masks is not None and masks[i] is not None: mask = masks[i] assert mask.shape == F.shape[:2] F_flat = F_flat[mask.reshape(-1)] flatten.append(F_flat) flatten = np.concatenate(flatten, axis=0) flatten = normalize(flatten) pca = PCA(n_components=3) if skip > 1: pca.fit(flatten[::skip]) flatten = pca.transform(flatten) else: flatten = pca.fit_transform(flatten) flatten = (normalize(flatten) + 1) / 2 Fs_rgb = [] for i, F in enumerate(Fs): h, w = F.shape[-2:] if masks is None or masks[i] is None: F_rgb, flatten = np.split(flatten, [h * w], axis=0) F_rgb = F_rgb.reshape((h, w, 3)) else: F_rgb = np.zeros((h, w, 3)) indices = np.where(masks[i]) F_rgb[indices], flatten = np.split(flatten, [len(indices[0])], axis=0) F_rgb = np.concatenate([F_rgb, masks[i][..., None]], axis=-1) Fs_rgb.append(F_rgb) assert flatten.shape[0] == 0, flatten.shape return Fs_rgb