# HED batch processing script; modified from https://github.com/s9xie/hed/blob/master/examples/hed/HED-tutorial.ipynb # Step 1: download the hed repo: https://github.com/s9xie/hed # Step 2: download the models and protoxt, and put them under {caffe_root}/examples/hed/ # Step 3: put this script under {caffe_root}/examples/hed/ # Step 4: run the following script: # python batch_hed.py --images_dir=/data/to/path/photos/ --hed_mat_dir=/data/to/path/hed_mat_files/ # The code sometimes crashes after computation is done. Error looks like "Check failed: ... driver shutting down". You can just kill the job. # For large images, it will produce gpu memory issue. Therefore, you better resize the images before running this script. # Step 5: run the MATLAB post-processing script "PostprocessHED.m" import caffe import numpy as np from PIL import Image import os import argparse import sys import scipy.io as sio def parse_args(): parser = argparse.ArgumentParser(description='batch proccesing: photos->edges') parser.add_argument('--caffe_root', dest='caffe_root', help='caffe root', default='../../', type=str) parser.add_argument('--caffemodel', dest='caffemodel', help='caffemodel', default='./hed_pretrained_bsds.caffemodel', type=str) parser.add_argument('--prototxt', dest='prototxt', help='caffe prototxt file', default='./deploy.prototxt', type=str) parser.add_argument('--images_dir', dest='images_dir', help='directory to store input photos', type=str) parser.add_argument('--hed_mat_dir', dest='hed_mat_dir', help='directory to store output hed edges in mat file', type=str) parser.add_argument('--border', dest='border', help='padding border', type=int, default=128) parser.add_argument('--gpu_id', dest='gpu_id', help='gpu id', type=int, default=1) args = parser.parse_args() return args args = parse_args() for arg in vars(args): print('[%s] =' % arg, getattr(args, arg)) # Make sure that caffe is on the python path: caffe_root = args.caffe_root # this file is expected to be in {caffe_root}/examples/hed/ sys.path.insert(0, caffe_root + 'python') if not os.path.exists(args.hed_mat_dir): print('create output directory %s' % args.hed_mat_dir) os.makedirs(args.hed_mat_dir) imgList = os.listdir(args.images_dir) nImgs = len(imgList) print('#images = %d' % nImgs) caffe.set_mode_gpu() caffe.set_device(args.gpu_id) # load net net = caffe.Net(args.prototxt, args.caffemodel, caffe.TEST) # pad border border = args.border for i in range(nImgs): if i % 500 == 0: print('processing image %d/%d' % (i, nImgs)) im = Image.open(os.path.join(args.images_dir, imgList[i])) in_ = np.array(im, dtype=np.float32) in_ = np.pad(in_, ((border, border), (border, border), (0, 0)), 'reflect') in_ = in_[:, :, 0:3] in_ = in_[:, :, ::-1] in_ -= np.array((104.00698793, 116.66876762, 122.67891434)) in_ = in_.transpose((2, 0, 1)) # remove the following two lines if testing with cpu # shape for input (data blob is N x C x H x W), set data net.blobs['data'].reshape(1, *in_.shape) net.blobs['data'].data[...] = in_ # run net and take argmax for prediction net.forward() fuse = net.blobs['sigmoid-fuse'].data[0][0, :, :] # get rid of the border fuse = fuse[(border + 35):(-border + 35), (border + 35):(-border + 35)] # save hed file to the disk name, ext = os.path.splitext(imgList[i]) sio.savemat(os.path.join(args.hed_mat_dir, name + '.mat'), {'edge_predict': fuse})