"""General-purpose training script for image-to-image translation. This script works for various models (with option '--model': e.g., pix2pix, cyclegan, colorization) and different datasets (with option '--dataset_mode': e.g., aligned, unaligned, single, colorization). You need to specify the dataset ('--dataroot'), experiment name ('--name'), and model ('--model'). It first creates model, dataset, and visualizer given the option. It then does standard network training. During the training, it also visualize/save the images, print/save the loss plot, and save models. The script supports continue/resume training. Use '--continue_train' to resume your previous training. Example: Train a CycleGAN model: python train.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan Train a pix2pix model: python train.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA python train.py --dataroot E:\Graduate_Student\datasets\GAN\selfie2anime\selfie2anime --name selfie2anime --model cycle_ganĀ  See options/base_options.py and options/train_options.py for more training options. See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md """ import time from options.train_options import TrainOptions from data import create_dataset from models import create_model from util.visualizer import Visualizer import os os.environ['CUDA_VISIBLE_DEVICES'] = "0" if __name__ == '__main__': opt = TrainOptions().parse() # get training options dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options dataset_size = len(dataset) # get the number of images in the dataset. print('The number of training images = %d' % dataset_size) model = create_model(opt) # create a model given opt.model and other options model.setup(opt) # regular setup: load and print networks; create schedulers visualizer = Visualizer(opt) # create a visualizer that display/save images and plots total_iters = 0 # the total number of training iterations for epoch in range(opt.epoch_count, opt.n_epochs + opt.n_epochs_decay + 1): # outer loop for different epochs; we save the model by , + epoch_start_time = time.time() # timer for entire epoch iter_data_time = time.time() # timer for data loading per iteration epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch visualizer.reset() # reset the visualizer: make sure it saves the results to HTML at least once every epoch model.update_learning_rate() # update learning rates in the beginning of every epoch. for i, data in enumerate(dataset): # inner loop within one epoch iter_start_time = time.time() # timer for computation per iteration if total_iters % opt.print_freq == 0: t_data = iter_start_time - iter_data_time total_iters += opt.batch_size epoch_iter += opt.batch_size model.set_input(data) # unpack data from dataset and apply preprocessing model.optimize_parameters() # calculate loss functions, get gradients, update network weights if total_iters % opt.display_freq == 0: # display images on visdom and save images to a HTML file save_result = total_iters % opt.update_html_freq == 0 model.compute_visuals() visualizer.display_current_results(model.get_current_visuals(), epoch, save_result) if total_iters % opt.print_freq == 0: # print training losses and save logging information to the disk losses = model.get_current_losses() t_comp = (time.time() - iter_start_time) / opt.batch_size visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data) if opt.display_id > 0: visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, losses) if total_iters % opt.save_latest_freq == 0: # cache our latest model every iterations print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters)) save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest' model.save_networks(save_suffix) iter_data_time = time.time() if epoch % opt.save_epoch_freq == 0: # cache our model every epochs print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters)) model.save_networks('latest') model.save_networks(epoch) print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.n_epochs + opt.n_epochs_decay, time.time() - epoch_start_time))