import evaluate import numpy as np import streamlit as st from datasets import load_dataset from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, ) from transformers.trainer_callback import TrainerControl, TrainerState import wandb class StreamlitProgressbarCallback(TrainerCallback): """ StreamlitProgressbarCallback is a custom callback for the Hugging Face Trainer that integrates a progress bar into a Streamlit application. This class updates the progress bar at each training step, providing real-time feedback on the training process within the Streamlit interface. Attributes: progress_bar (streamlit.delta_generator.DeltaGenerator): A Streamlit progress bar object initialized to 0 with the text "Training". Methods: on_step_begin(args, state, control, **kwargs): Updates the progress bar at the beginning of each training step. The progress is calculated as the percentage of completed steps out of the total steps. The progress bar text is updated to show the current step and the total steps. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.progress_bar = st.progress(0, text="Training") def on_step_begin( self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs, ): super().on_step_begin(args, state, control, **kwargs) self.progress_bar.progress( (state.global_step * 100 // state.max_steps) + 1, text=f"Training {state.global_step} / {state.max_steps}", ) def train_binary_classifier( project_name: str, entity_name: str, run_name: str, dataset_repo: str = "geekyrakshit/prompt-injection-dataset", model_name: str = "distilbert/distilbert-base-uncased", prompt_column_name: str = "prompt", id2label: dict[int, str] = {0: "SAFE", 1: "INJECTION"}, label2id: dict[str, int] = {"SAFE": 0, "INJECTION": 1}, learning_rate: float = 1e-5, batch_size: int = 16, num_epochs: int = 2, weight_decay: float = 0.01, save_steps: int = 1000, streamlit_mode: bool = False, ): """ Trains a binary classifier using a specified dataset and model architecture. This function sets up and trains a binary sequence classification model using the Hugging Face Transformers library. It integrates with Weights & Biases for experiment tracking and optionally displays a progress bar in a Streamlit app. Args: project_name (str): The name of the Weights & Biases project. entity_name (str): The Weights & Biases entity (user or team). run_name (str): The name of the Weights & Biases run. dataset_repo (str, optional): The Hugging Face dataset repository to load. model_name (str, optional): The pre-trained model to use. prompt_column_name (str, optional): The column name in the dataset containing the text prompts. id2label (dict[int, str], optional): Mapping from label IDs to label names. label2id (dict[str, int], optional): Mapping from label names to label IDs. learning_rate (float, optional): The learning rate for training. batch_size (int, optional): The batch size for training and evaluation. num_epochs (int, optional): The number of training epochs. weight_decay (float, optional): The weight decay for the optimizer. save_steps (int, optional): The number of steps between model checkpoints. streamlit_mode (bool, optional): If True, integrates with Streamlit to display a progress bar. Returns: dict: The output of the training process, including metrics and model state. Raises: Exception: If an error occurs during training, the exception is raised after ensuring Weights & Biases run is finished. """ wandb.init(project=project_name, entity=entity_name, name=run_name) if streamlit_mode: st.markdown( f"Explore your training logs on [Weights & Biases]({wandb.run.url})" ) dataset = load_dataset(dataset_repo) tokenizer = AutoTokenizer.from_pretrained(model_name) tokenized_datasets = dataset.map( lambda examples: tokenizer(examples[prompt_column_name], truncation=True), batched=True, ) data_collator = DataCollatorWithPadding(tokenizer=tokenizer) accuracy = evaluate.load("accuracy") def compute_metrics(eval_pred): predictions, labels = eval_pred predictions = np.argmax(predictions, axis=1) return accuracy.compute(predictions=predictions, references=labels) model = AutoModelForSequenceClassification.from_pretrained( model_name, num_labels=2, id2label=id2label, label2id=label2id, ) trainer = Trainer( model=model, args=TrainingArguments( output_dir="binary-classifier", learning_rate=learning_rate, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, num_train_epochs=num_epochs, weight_decay=weight_decay, eval_strategy="epoch", save_strategy="steps", save_steps=save_steps, load_best_model_at_end=True, push_to_hub=False, report_to="wandb", logging_strategy="steps", logging_steps=1, ), train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["test"], processing_class=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics, callbacks=[StreamlitProgressbarCallback()] if streamlit_mode else [], ) try: training_output = trainer.train() except Exception as e: wandb.finish() raise e wandb.finish() return training_output