import gradio as gr import requests import io import random import os from PIL import Image from deep_translator import GoogleTranslator # Project by Nymbo API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev" API_TOKEN = os.getenv("HF_READ_TOKEN") headers = {"Authorization": f"Bearer {API_TOKEN}"} timeout = 100 MAX_IMAGE_SIZE = 1024 # Define the maximum image size def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=512, height=512): if not prompt: return None key = random.randint(0, 999) if API_TOKEN is None: raise gr.Error("API token is missing. Please set the HF_READ_TOKEN environment variable.") headers = {"Authorization": f"Bearer {API_TOKEN}"} try: prompt = GoogleTranslator(source='my', target='en').translate(prompt) except Exception as e: print(f"Translation error: {e}") raise gr.Error("Failed to translate the prompt.") prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect." print(f'Generation {key}: {prompt}') payload = { "inputs": prompt, "is_negative": is_negative, "steps": steps, "cfg_scale": cfg_scale, "seed": seed if seed != -1 else random.randint(1, 1000000000), "strength": strength, "width": width, "height": height } try: response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout) response.raise_for_status() image_bytes = response.content image = Image.open(io.BytesIO(image_bytes)) print(f'Generation {key} completed! ({prompt})') return image except requests.exceptions.RequestException as e: print(f"Error: Failed to get image. {e}") raise gr.Error(f"Failed to get image: {e}") except Exception as e: print(f"Error when trying to open the image: {e}") return None css = """ #app-container { max-width: 600px; margin-left: auto; margin-right: auto; } """ with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app: gr.HTML("

Walone AI Image Stable Pro

") with gr.Column(elem_id="app-container"): with gr.Row(): with gr.Column(elem_id="prompt-container"): text_prompt = gr.Textbox(label="Prompt ရေးပါ", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input") with gr.Row(): with gr.Accordion("အဆင့်မြင့် Settings", open=False): negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input") steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1) cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1) method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"]) strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001) seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) width = gr.Slider(label="Width", value=512, minimum=256, maximum=MAX_IMAGE_SIZE, step=32) height = gr.Slider(label="Height", value=512, minimum=256, maximum=MAX_IMAGE_SIZE, step=32) with gr.Row(): text_button = gr.Button("Run", variant='primary', elem_id="gen-button") with gr.Row(): image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery") text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=image_output) app.launch(show_api=False, share=False)