import gradio as gr from transformers import pipeline # Load the emotion detection pipeline emotion_pipeline = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion") def predict_emotion(text): result = emotion_pipeline(text)[0] label = result["label"] score = result["score"] return f"🧠 Emotion: {label.upper()} ({score:.2f})" # Gradio Interface demo = gr.Interface( fn=predict_emotion, inputs=gr.Textbox(lines=3, placeholder="Type something emotional..."), outputs="text", title="🎭 LM Studios Emotion Detector", description="Now with real emotional awareness: detects joy, anger, sadness, fear, love, and surprise.", theme="default", flagging_mode="never" ) demo.launch()