import torch import torchvision import random import gradio as gr import os from torch import nn from typing import Tuple, Dict from timeit import default_timer as timer from model import create_effnetb2 # Hardcoding the class names class_names = ['pizza', 'steak', 'sushi'] # Creating the EffnetB2 model and transforms effnetb2, effnetb2_transforms = create_effnetb2(num_class = len(class_names), seed = 42) effnetb2.load_state_dict(torch.load(f = 'effnetb2.pth', map_location = torch.device('cpu'))) # Defining the example images list example_list = [["examples/" + example] for example in os.listdir('examples')] # Defining the predict function def predict(img) -> Tuple[Dict, float]: start_time = timer() transformed_img = effnetb2_transforms(img).unsqueeze(0) effnetb2.eval() with torch.inference_mode(): y_logits = effnetb2(transformed_img) y_preds = torch.softmax(y_logits, dim = 1) y_label = torch.argmax(y_preds, dim = 1) pred_labels_probs = {class_names[i]: float(y_preds[0][i]) for i in range(len(class_names))} end_time = timer() pred_time = round(end_time - start_time, 4) return pred_labels_probs, pred_time # Creating the gradio app title = 'FoodVision Mini' description = 'An EfficientNetB2 feature extractor CV model to classify images of food as pizza, steak or sushi.' demo = gr.Interface(fn=predict, inputs=gr.Image(type='pil'), outputs=[gr.Label(num_top_classes = len(class_names), label = 'Prediction Probabilities'), gr.Number(label = 'Prediction Time (s)')], examples = example_list, title = title, description = description) demo.launch()