import torch from torch.utils.data import Dataset import numpy as np import torchaudio as ta from .preprocess import AudioPipeline class SongDataset(Dataset): def __init__(self, audio_paths: list[str], dance_labels: list[np.ndarray], audio_duration=30, # seconds audio_window_duration=6, # seconds ): assert audio_duration % audio_window_duration == 0, "Audio window should divide duration evenly." self.audio_paths = audio_paths self.dance_labels = dance_labels audio_info = ta.info(audio_paths[0]) self.sample_rate = audio_info.sample_rate self.audio_window_duration = int(audio_window_duration) self.audio_duration = int(audio_duration) self.audio_pipeline = AudioPipeline(input_freq=self.sample_rate) def __len__(self): return len(self.audio_paths) * self.audio_duration // self.audio_window_duration def __getitem__(self, idx) -> tuple[torch.Tensor, torch.Tensor]: waveform = self._waveform_from_index(idx) spectrogram = self.audio_pipeline(waveform) dance_labels = self._label_from_index(idx) return spectrogram, dance_labels def _waveform_from_index(self, idx:int) -> torch.Tensor: audio_file_idx = idx * self.audio_window_duration // self.audio_duration frame_offset = idx % self.audio_duration // self.audio_window_duration num_frames = self.sample_rate * self.audio_window_duration waveform, sample_rate = ta.load(self.audio_paths[audio_file_idx], frame_offset=frame_offset, num_frames=num_frames) assert sample_rate == self.sample_rate, f"Expected sample rate of {self.sample_rate}. Found {sample_rate}" return waveform def _label_from_index(self, idx:int) -> torch.Tensor: label_idx = idx * self.audio_window_duration // self.audio_duration return torch.from_numpy(self.dance_labels[label_idx])