import os from typing import Any import pytorch_lightning as pl from torch.utils.data import random_split from transformers import AutoFeatureExtractor from transformers import AutoModelForAudioClassification, TrainingArguments, Trainer from preprocessing.dataset import ( HuggingFaceDatasetWrapper, BestBallroomDataset, get_datasets, ) from preprocessing.pipelines import WaveformTrainingPipeline from .utils import get_id_label_mapping, compute_hf_metrics MODEL_CHECKPOINT = "facebook/wav2vec2-base" class Wav2VecFeatureExtractor: def __init__(self) -> None: self.waveform_pipeline = WaveformTrainingPipeline() self.feature_extractor = AutoFeatureExtractor.from_pretrained( MODEL_CHECKPOINT, ) def __call__(self, waveform) -> Any: waveform = self.waveform_pipeline(waveform) return self.feature_extractor( waveform.squeeze(0), sampling_rate=self.feature_extractor.sampling_rate ) def __getattr__(self, attr): return getattr(self.feature_extractor, attr) def train_huggingface(config: dict): TARGET_CLASSES = config["dance_ids"] DEVICE = config["device"] SEED = config["seed"] OUTPUT_DIR = "models/weights/wav2vec2" batch_size = config["data_module"]["batch_size"] epochs = config["trainer"]["min_epochs"] test_proportion = config["data_module"].get("test_proportion", 0.2) pl.seed_everything(SEED, workers=True) feature_extractor = Wav2VecFeatureExtractor() dataset = get_datasets(config["datasets"], feature_extractor) dataset = HuggingFaceDatasetWrapper(dataset) id2label, label2id = get_id_label_mapping(TARGET_CLASSES) test_proportion = config["data_module"]["test_proportion"] train_proporition = 1 - test_proportion train_ds, test_ds = random_split(dataset, [train_proporition, test_proportion]) model = AutoModelForAudioClassification.from_pretrained( MODEL_CHECKPOINT, num_labels=len(TARGET_CLASSES), label2id=label2id, id2label=id2label, ignore_mismatched_sizes=True, ).to(DEVICE) training_args = TrainingArguments( output_dir=OUTPUT_DIR, evaluation_strategy="epoch", save_strategy="epoch", learning_rate=3e-5, per_device_train_batch_size=batch_size, gradient_accumulation_steps=5, per_device_eval_batch_size=batch_size, num_train_epochs=epochs, warmup_ratio=0.1, logging_steps=10, load_best_model_at_end=True, metric_for_best_model="accuracy", push_to_hub=False, use_mps_device=DEVICE == "mps", ) trainer = Trainer( model=model, args=training_args, train_dataset=train_ds, eval_dataset=test_ds, compute_metrics=compute_hf_metrics, ) trainer.train() return model