import gradio as gr import onnxruntime as rt from transformers import AutoTokenizer import torch import json tokenizer = AutoTokenizer.from_pretrained("distilroberta-base") with open("genre_types_encoded.json", "r") as fp: encode_genre_types = json.load(fp) genres = list(encode_genre_types.keys()) inf_session = rt.InferenceSession('genre-classifier-quantized.onnx') input_name = inf_session.get_inputs()[0].name output_name = inf_session.get_outputs()[0].name def classify_movie_genre(summary): tokens = tokenizer(summary, padding='max_length', truncation=True, return_tensors="pt") input_ids = tokens['input_ids'][0].tolist()[:512] print("Input summary:", summary) print("Tokenized input:", input_ids) logits = inf_session.run([output_name], {input_name: [input_ids]})[0] logits = torch.FloatTensor(logits) probs = torch.sigmoid(logits)[0] print("Logits:", logits) print("Probabilities:", probs) return dict(zip(genres, map(float, probs))) label = gr.Label(num_top_classes=10) iface = gr.Interface(fn=classify_movie_genre, inputs="text", outputs=label) iface.launch(inline=False)