import torch import torch.nn as nn import torch.nn.functional as F from timm.models.layers import trunc_normal_, DropPath from timm.models.registry import register_model from .clipiqa_arch import CLIPIQA class GRN(nn.Module): """ GRN (Global Response Normalization) layer """ def __init__(self, dim): super().__init__() self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim)) self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim)) def forward(self, x): Gx = torch.norm(x, p=2, dim=(1,2), keepdim=True) Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6) return self.gamma * (x * Nx) + self.beta + x class Block(nn.Module): r""" ConvNeXt Block. There are two equivalent implementations: (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back We use (2) as we find it slightly faster in PyTorch Args: dim (int): Number of input channels. drop_path (float): Stochastic depth rate. Default: 0.0 layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. """ def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6): super().__init__() self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv self.norm = LayerNorm(dim, eps=1e-6) self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers self.act = nn.GELU() self.pwconv2 = nn.Linear(4 * dim, dim) self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True) if layer_scale_init_value > 0 else None self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): input = x x = self.dwconv(x) x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) x = self.norm(x) x = self.pwconv1(x) x = self.act(x) x = self.pwconv2(x) if self.gamma is not None: x = self.gamma * x x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) x = input + self.drop_path(x) return x class ConvNeXt(nn.Module): r""" ConvNeXt A PyTorch impl of : `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf Args: in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768] drop_path_rate (float): Stochastic depth rate. Default: 0. layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. """ def __init__(self, in_chans=3, num_classes=1000, depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0., layer_scale_init_value=1e-6, head_init_scale=1., ): super().__init__() self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers stem = nn.Sequential( nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), LayerNorm(dims[0], eps=1e-6, data_format="channels_first") ) self.downsample_layers.append(stem) for i in range(3): downsample_layer = nn.Sequential( LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2), ) self.downsample_layers.append(downsample_layer) self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] cur = 0 for i in range(4): stage = nn.Sequential( *[Block(dim=dims[i], drop_path=dp_rates[cur + j], layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])] ) self.stages.append(stage) cur += depths[i] self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer self.head = nn.Linear(dims[-1], num_classes) self.apply(self._init_weights) self.head.weight.data.mul_(head_init_scale) self.head.bias.data.mul_(head_init_scale) def _init_weights(self, m): if isinstance(m, (nn.Conv2d, nn.Linear)): trunc_normal_(m.weight, std=.02) nn.init.constant_(m.bias, 0) def forward_features(self, x): for i in range(4): x = self.downsample_layers[i](x) x = self.stages[i](x) return self.norm(x.mean([-2, -1])) # global average pooling, (N, C, H, W) -> (N, C) def forward(self, x): x = self.forward_features(x) x = self.head(x) return x class LayerNorm(nn.Module): r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). """ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): super().__init__() self.weight = nn.Parameter(torch.ones(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) self.eps = eps self.data_format = data_format if self.data_format not in ["channels_last", "channels_first"]: raise NotImplementedError self.normalized_shape = (normalized_shape, ) def forward(self, x): if self.data_format == "channels_last": return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) elif self.data_format == "channels_first": u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) if len(x.shape) == 4: x = self.weight[:, None, None] * x + self.bias[:, None, None] elif len(x.shape) == 5: x = self.weight[:, None, None, None] * x + self.bias[:, None, None, None] return x class Block3D(nn.Module): r""" ConvNeXt Block. There are two equivalent implementations: (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back We use (2) as we find it slightly faster in PyTorch Args: dim (int): Number of input channels. drop_path (float): Stochastic depth rate. Default: 0.0 layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. """ def __init__(self, dim, drop_path=0., inflate_len=3, layer_scale_init_value=1e-6): super().__init__() self.dwconv = nn.Conv3d(dim, dim, kernel_size=(inflate_len,7,7), padding=(inflate_len // 2,3,3), groups=dim) # depthwise conv self.norm = LayerNorm(dim, eps=1e-6) self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers self.act = nn.GELU() self.pwconv2 = nn.Linear(4 * dim, dim) self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True) if layer_scale_init_value > 0 else None self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): input = x x = self.dwconv(x) x = x.permute(0, 2, 3, 4, 1) # (N, C, H, W) -> (N, H, W, C) x = self.norm(x) x = self.pwconv1(x) x = self.act(x) x = self.pwconv2(x) if self.gamma is not None: x = self.gamma * x x = x.permute(0, 4, 1, 2, 3) # (N, H, W, C) -> (N, C, H, W) x = input + self.drop_path(x) return x class BlockV2(nn.Module): """ ConvNeXtV2 Block. Args: dim (int): Number of input channels. drop_path (float): Stochastic depth rate. Default: 0.0 """ def __init__(self, dim, drop_path=0.): super().__init__() self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv self.norm = LayerNorm(dim, eps=1e-6) self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers self.act = nn.GELU() self.grn = GRN(4 * dim) self.pwconv2 = nn.Linear(4 * dim, dim) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): input = x x = self.dwconv(x) x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) x = self.norm(x) x = self.pwconv1(x) x = self.act(x) x = self.grn(x) x = self.pwconv2(x) x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) x = input + self.drop_path(x) return x class BlockV23D(nn.Module): """ ConvNeXtV2 Block. Args: dim (int): Number of input channels. drop_path (float): Stochastic depth rate. Default: 0.0 """ def __init__(self, dim, drop_path=0., inflate_len=3,): super().__init__() self.dwconv = nn.Conv3d(dim, dim, kernel_size=(inflate_len,7,7), padding=(inflate_len // 2,3,3), groups=dim) # depthwise conv self.norm = LayerNorm(dim, eps=1e-6) self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers self.act = nn.GELU() self.grn = GRN(4 * dim) self.pwconv2 = nn.Linear(4 * dim, dim) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): input = x x = self.dwconv(x) x = x.permute(0, 2, 3, 4, 1) # (N, C, H, W) -> (N, H, W, C) x = self.norm(x) x = self.pwconv1(x) x = self.act(x) x = self.grn(x) x = self.pwconv2(x) x = x.permute(0, 4, 1, 2, 3) # (N, H, W, C) -> (N, C, H, W) x = input + self.drop_path(x) return x class ConvNeXtV2(nn.Module): """ ConvNeXt V2 Args: in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768] drop_path_rate (float): Stochastic depth rate. Default: 0. head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. """ def __init__(self, in_chans=3, num_classes=1000, depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0., head_init_scale=1. ): super().__init__() self.depths = depths self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers stem = nn.Sequential( nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), LayerNorm(dims[0], eps=1e-6, data_format="channels_first") ) self.downsample_layers.append(stem) for i in range(3): downsample_layer = nn.Sequential( LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2), ) self.downsample_layers.append(downsample_layer) self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] cur = 0 for i in range(4): stage = nn.Sequential( *[BlockV2(dim=dims[i], drop_path=dp_rates[cur + j]) for j in range(depths[i])] ) self.stages.append(stage) cur += depths[i] self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer self.head = nn.Linear(dims[-1], num_classes) self.apply(self._init_weights) self.head.weight.data.mul_(head_init_scale) self.head.bias.data.mul_(head_init_scale) def _init_weights(self, m): if isinstance(m, (nn.Conv2d, nn.Linear)): trunc_normal_(m.weight, std=.02) nn.init.constant_(m.bias, 0) def forward_features(self, x): for i in range(4): x = self.downsample_layers[i](x) x = self.stages[i](x) return self.norm(x.mean([-2, -1])) # global average pooling, (N, C, H, W) -> (N, C) def forward(self, x): x = self.forward_features(x) x = self.head(x) return x def convnextv2_atto(**kwargs): model = ConvNeXtV2(depths=[2, 2, 6, 2], dims=[40, 80, 160, 320], **kwargs) return model def convnextv2_femto(**kwargs): model = ConvNeXtV2(depths=[2, 2, 6, 2], dims=[48, 96, 192, 384], **kwargs) return model def convnext_pico(**kwargs): model = ConvNeXtV2(depths=[2, 2, 6, 2], dims=[64, 128, 256, 512], **kwargs) return model def convnextv2_nano(**kwargs): model = ConvNeXtV2(depths=[2, 2, 8, 2], dims=[80, 160, 320, 640], **kwargs) return model def convnextv2_tiny(**kwargs): model = ConvNeXtV2(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs) return model def convnextv2_base(**kwargs): model = ConvNeXtV2(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs) return model def convnextv2_large(**kwargs): model = ConvNeXtV2(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs) return model def convnextv2_huge(**kwargs): model = ConvNeXtV2(depths=[3, 3, 27, 3], dims=[352, 704, 1408, 2816], **kwargs) return model class ConvNeXt3D(nn.Module): r""" ConvNeXt A PyTorch impl of : `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf Args: in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768] drop_path_rate (float): Stochastic depth rate. Default: 0. layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. """ def __init__(self, in_chans=3, num_classes=1000, inflate_strategy='131', depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0., layer_scale_init_value=1e-6, head_init_scale=1., ): super().__init__() self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers stem = nn.Sequential( nn.Conv3d(in_chans, dims[0], kernel_size=(2,4,4), stride=(2,4,4)), LayerNorm(dims[0], eps=1e-6, data_format="channels_first") ) self.downsample_layers.append(stem) for i in range(3): downsample_layer = nn.Sequential( LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), nn.Conv3d(dims[i], dims[i+1], kernel_size=(1,2,2), stride=(1,2,2)), ) self.downsample_layers.append(downsample_layer) self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] cur = 0 for i in range(4): stage = nn.Sequential( *[Block3D(dim=dims[i], inflate_len=int(inflate_strategy[j%len(inflate_strategy)]), drop_path=dp_rates[cur + j], layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])] ) self.stages.append(stage) cur += depths[i] self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer self.apply(self._init_weights) def inflate_weights(self, s_state_dict): t_state_dict = self.state_dict() from collections import OrderedDict for key in t_state_dict.keys(): if key not in s_state_dict: print(key) continue if t_state_dict[key].shape != s_state_dict[key].shape: t = t_state_dict[key].shape[2] s_state_dict[key] = s_state_dict[key].unsqueeze(2).repeat(1,1,t,1,1) / t self.load_state_dict(s_state_dict, strict=False) def _init_weights(self, m): if isinstance(m, (nn.Conv3d, nn.Linear)): trunc_normal_(m.weight, std=.02) nn.init.constant_(m.bias, 0) def forward_features(self, x, return_spatial=False, multi=False, layer=-1): if multi: xs = [] for i in range(4): x = self.downsample_layers[i](x) x = self.stages[i](x) if multi: xs.append(x) if return_spatial: if multi: shape = xs[-1].shape[2:] return torch.cat([F.interpolate(x,size=shape, mode="trilinear") for x in xs[:-1]], 1) #+ [self.norm(x.permute(0, 2, 3, 4, 1)).permute(0, 4, 1, 2, 3)], 1) elif layer > -1: return xs[layer] else: return self.norm(x.permute(0, 2, 3, 4, 1)).permute(0, 4, 1, 2, 3) return self.norm(x.mean([-3, -2, -1])) # global average pooling, (N, C, T, H, W) -> (N, C) def forward(self, x, multi=False, layer=-1): x = self.forward_features(x, True, multi=multi, layer=layer) return x class ConvNeXtV23D(nn.Module): """ ConvNeXt V2 Args: in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768] drop_path_rate (float): Stochastic depth rate. Default: 0. head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. """ def __init__(self, in_chans=3, num_classes=1000, inflate_strategy='131', depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0., head_init_scale=1. ): super().__init__() self.depths = depths self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers stem = nn.Sequential( nn.Conv3d(in_chans, dims[0], kernel_size=(2,4,4), stride=(2,4,4)), LayerNorm(dims[0], eps=1e-6, data_format="channels_first") ) self.downsample_layers.append(stem) for i in range(3): downsample_layer = nn.Sequential( LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), nn.Conv3d(dims[i], dims[i+1], kernel_size=(1,2,2), stride=(1,2,2)), ) self.downsample_layers.append(downsample_layer) self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] cur = 0 for i in range(4): stage = nn.Sequential( *[BlockV23D(dim=dims[i], drop_path=dp_rates[cur + j], inflate_len=int(inflate_strategy[j%len(inflate_strategy)]), ) for j in range(depths[i])] ) self.stages.append(stage) cur += depths[i] self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer self.head = nn.Linear(dims[-1], num_classes) self.apply(self._init_weights) self.head.weight.data.mul_(head_init_scale) self.head.bias.data.mul_(head_init_scale) def inflate_weights(self, pretrained_path): t_state_dict = self.state_dict() s_state_dict = torch.load(pretrained_path)["model"] from collections import OrderedDict for key in t_state_dict.keys(): if key not in s_state_dict: print(key) continue if t_state_dict[key].shape != s_state_dict[key].shape: print(t_state_dict[key].shape, s_state_dict[key].shape) t = t_state_dict[key].shape[2] s_state_dict[key] = s_state_dict[key].unsqueeze(2).repeat(1,1,t,1,1) / t self.load_state_dict(s_state_dict, strict=False) def _init_weights(self, m): if isinstance(m, (nn.Conv3d, nn.Linear)): trunc_normal_(m.weight, std=.02) nn.init.constant_(m.bias, 0) def forward_features(self, x, return_spatial=False, multi=False, layer=-1): if multi: xs = [] for i in range(4): x = self.downsample_layers[i](x) x = self.stages[i](x) if multi: xs.append(x) if return_spatial: if multi: shape = xs[-1].shape[2:] return torch.cat([F.interpolate(x,size=shape, mode="trilinear") for x in xs[:-1]], 1) #+ [self.norm(x.permute(0, 2, 3, 4, 1)).permute(0, 4, 1, 2, 3)], 1) elif layer > -1: return xs[layer] else: return self.norm(x.permute(0, 2, 3, 4, 1)).permute(0, 4, 1, 2, 3) return self.norm(x.mean([-3, -2, -1])) # global average pooling, (N, C, T, H, W) -> (N, C) def forward(self, x, multi=False, layer=-1): x = self.forward_features(x, True, multi=multi, layer=layer) return x model_urls = { "convnext_tiny_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth", "convnext_small_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth", "convnext_base_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth", "convnext_large_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth", "convnext_tiny_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_224.pth", "convnext_small_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_224.pth", "convnext_base_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth", "convnext_large_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth", "convnext_xlarge_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth", } def convnext_tiny(pretrained=False,in_22k=False, **kwargs): model = ConvNeXt(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs) if pretrained: url = model_urls['convnext_tiny_22k'] if in_22k else model_urls['convnext_tiny_1k'] checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True) model.load_state_dict(checkpoint["model"]) return model def convnext_small(pretrained=False,in_22k=False, **kwargs): model = ConvNeXt(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs) if pretrained: url = model_urls['convnext_small_22k'] if in_22k else model_urls['convnext_small_1k'] checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") model.load_state_dict(checkpoint["model"]) return model def convnext_base(pretrained=False, in_22k=False, **kwargs): model = ConvNeXt(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs) if pretrained: url = model_urls['convnext_base_22k'] if in_22k else model_urls['convnext_base_1k'] checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") model.load_state_dict(checkpoint["model"]) return model def convnext_large(pretrained=False, in_22k=False, **kwargs): model = ConvNeXt(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs) if pretrained: url = model_urls['convnext_large_22k'] if in_22k else model_urls['convnext_large_1k'] checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") model.load_state_dict(checkpoint["model"]) return model def convnext_xlarge(pretrained=False, in_22k=False, **kwargs): model = ConvNeXt(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], **kwargs) if pretrained: assert in_22k, "only ImageNet-22K pre-trained ConvNeXt-XL is available; please set in_22k=True" url = model_urls['convnext_xlarge_22k'] checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") model.load_state_dict(checkpoint["model"]) return model def convnext_3d_tiny(pretrained=False, in_22k=False, **kwargs): print("Using Imagenet 22K pretrain", in_22k) model = ConvNeXt3D(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs) if pretrained: url = model_urls['convnext_tiny_22k'] if in_22k else model_urls['convnext_tiny_1k'] checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True) model.inflate_weights(checkpoint["model"]) return model def convnext_3d_small(pretrained=False, in_22k=False, **kwargs): model = ConvNeXt3D(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs) if pretrained: url = model_urls['convnext_small_22k'] if in_22k else model_urls['convnext_small_1k'] checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True) model.inflate_weights(checkpoint["model"]) return model def convnextv2_3d_atto(**kwargs): model = ConvNeXtV23D(depths=[2, 2, 6, 2], dims=[40, 80, 160, 320], **kwargs) return model def convnextv2_3d_femto(pretrained="../pretrained/convnextv2_femto_1k_224_ema.pt", **kwargs): model = ConvNeXtV23D(depths=[2, 2, 6, 2], dims=[48, 96, 192, 384], **kwargs) #model.inflate_weights(pretrained) return model def convnextv2_3d_pico(pretrained="../pretrained/convnextv2_pico_1k_224_ema.pt", **kwargs): model = ConvNeXtV23D(depths=[2, 2, 6, 2], dims=[64, 128, 256, 512], **kwargs) #model.inflate_weights(pretrained) return model def convnextv2_3d_nano(pretrained="../pretrained/convnextv2_nano_1k_224_ema.pt", **kwargs): model = ConvNeXtV23D(depths=[2, 2, 8, 2], dims=[80, 160, 320, 640], **kwargs) #model.inflate_weights(pretrained) return model def convnextv2_tiny(**kwargs): model = ConvNeXtV23D(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs) return model def convnextv2_base(**kwargs): model = ConvNeXtV23D(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs) return model def convnextv2_large(**kwargs): model = ConvNeXtV23D(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs) return model def convnextv2_huge(**kwargs): model = ConvNeXtV2(depths=[3, 3, 27, 3], dims=[352, 704, 1408, 2816], **kwargs) return model def clip_vitL14(pretrained, **kwargs): model = CLIPIQA(model_type='clipiqa+_vitL14_512', backbone='ViT-L/14', pretrained=pretrained) return model if __name__ == "__main__": device = "cuda" if torch.cuda.is_available() else "cpu" model = convnext_3d_tiny(True).to(device) print(model) from thop import profile print(profile(model, (torch.randn(4,3,32,224,224).to(device),))[0] / 1e9)