from functools import lru_cache, reduce from operator import mul import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from einops import rearrange from timm.models.layers import DropPath, trunc_normal_ def fragment_infos(D, H, W, fragments=7, device="cuda"): m = torch.arange(fragments).unsqueeze(-1).float() m = (m + m.t() * fragments).reshape(1, 1, 1, fragments, fragments) m = F.interpolate(m.to(device), size=(D, H, W)).permute(0, 2, 3, 4, 1) return m.long() @lru_cache def global_position_index( D, H, W, fragments=(1, 7, 7), window_size=(8, 7, 7), shift_size=(0, 0, 0), device="cuda", ): frags_d = torch.arange(fragments[0]) frags_h = torch.arange(fragments[1]) frags_w = torch.arange(fragments[2]) frags = torch.stack( torch.meshgrid(frags_d, frags_h, frags_w) ).float() # 3, Fd, Fh, Fw coords = ( torch.nn.functional.interpolate(frags[None].to(device), size=(D, H, W)) .long() .permute(0, 2, 3, 4, 1) ) # print(shift_size) coords = torch.roll( coords, shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), dims=(1, 2, 3) ) window_coords = window_partition(coords, window_size) relative_coords = ( window_coords[:, None, :] - window_coords[:, :, None] ) # Wd*Wh*Ww, Wd*Wh*Ww, 3 return relative_coords # relative_coords class Mlp(nn.Module): """Multilayer perceptron.""" def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def window_partition(x, window_size): """ Args: x: (B, D, H, W, C) window_size (tuple[int]): window size Returns: windows: (B*num_windows, window_size*window_size, C) """ B, D, H, W, C = x.shape x = x.view( B, D // window_size[0], window_size[0], H // window_size[1], window_size[1], W // window_size[2], window_size[2], C, ) windows = ( x.permute(0, 1, 3, 5, 2, 4, 6, 7) .contiguous() .view(-1, reduce(mul, window_size), C) ) return windows def window_reverse(windows, window_size, B, D, H, W): """ Args: windows: (B*num_windows, window_size, window_size, C) window_size (tuple[int]): Window size H (int): Height of image W (int): Width of image Returns: x: (B, D, H, W, C) """ x = windows.view( B, D // window_size[0], H // window_size[1], W // window_size[2], window_size[0], window_size[1], window_size[2], -1, ) x = x.permute(0, 1, 4, 2, 5, 3, 6, 7).contiguous().view(B, D, H, W, -1) return x def get_window_size(x_size, window_size, shift_size=None): use_window_size = list(window_size) if shift_size is not None: use_shift_size = list(shift_size) for i in range(len(x_size)): if x_size[i] <= window_size[i]: use_window_size[i] = x_size[i] if shift_size is not None: use_shift_size[i] = 0 if shift_size is None: return tuple(use_window_size) else: return tuple(use_window_size), tuple(use_shift_size) class WindowAttention3D(nn.Module): """Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: dim (int): Number of input channels. window_size (tuple[int]): The temporal length, height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 """ def __init__( self, dim, window_size, num_heads, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0, frag_bias=False, ): super().__init__() self.dim = dim self.window_size = window_size # Wd, Wh, Ww self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 # define a parameter table of relative position bias self.relative_position_bias_table = nn.Parameter( torch.zeros( (2 * window_size[0] - 1) * (2 * window_size[1] - 1) * (2 * window_size[2] - 1), num_heads, ) ) # 2*Wd-1 * 2*Wh-1 * 2*Ww-1, nH if frag_bias: self.fragment_position_bias_table = nn.Parameter( torch.zeros( (2 * window_size[0] - 1) * (2 * window_size[1] - 1) * (2 * window_size[2] - 1), num_heads, ) ) # get pair-wise relative position index for each token inside the window coords_d = torch.arange(self.window_size[0]) coords_h = torch.arange(self.window_size[1]) coords_w = torch.arange(self.window_size[2]) coords = torch.stack( torch.meshgrid(coords_d, coords_h, coords_w) ) # 3, Wd, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 3, Wd*Wh*Ww relative_coords = ( coords_flatten[:, :, None] - coords_flatten[:, None, :] ) # 3, Wd*Wh*Ww, Wd*Wh*Ww relative_coords = relative_coords.permute( 1, 2, 0 ).contiguous() # Wd*Wh*Ww, Wd*Wh*Ww, 3 relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 2] += self.window_size[2] - 1 relative_coords[:, :, 0] *= (2 * self.window_size[1] - 1) * ( 2 * self.window_size[2] - 1 ) relative_coords[:, :, 1] *= 2 * self.window_size[2] - 1 relative_position_index = relative_coords.sum(-1) # Wd*Wh*Ww, Wd*Wh*Ww self.register_buffer("relative_position_index", relative_position_index) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) trunc_normal_(self.relative_position_bias_table, std=0.02) self.softmax = nn.Softmax(dim=-1) def forward(self, x, mask=None, fmask=None): """Forward function. Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, N, N) or None """ B_, N, C = x.shape qkv = ( self.qkv(x) .reshape(B_, N, 3, self.num_heads, C // self.num_heads) .permute(2, 0, 3, 1, 4) ) q, k, v = qkv[0], qkv[1], qkv[2] # B_, nH, N, C q = q * self.scale attn = q @ k.transpose(-2, -1) relative_position_bias = self.relative_position_bias_table[ self.relative_position_index[:N, :N].reshape(-1) ].reshape( N, N, -1 ) # Wd*Wh*Ww,Wd*Wh*Ww,nH relative_position_bias = relative_position_bias.permute( 2, 0, 1 ).contiguous() # nH, Wd*Wh*Ww, Wd*Wh*Ww if hasattr(self, "fragment_position_bias_table"): fragment_position_bias = self.fragment_position_bias_table[ self.relative_position_index[:N, :N].reshape(-1) ].reshape( N, N, -1 ) # Wd*Wh*Ww,Wd*Wh*Ww,nH fragment_position_bias = fragment_position_bias.permute( 2, 0, 1 ).contiguous() # nH, Wd*Wh*Ww, Wd*Wh*Ww ### Mask Position Bias if fmask is not None: # fgate = torch.where(fmask - fmask.transpose(-1, -2) == 0, 1, 0).float() fgate = fmask.abs().sum(-1) nW = fmask.shape[0] relative_position_bias = relative_position_bias.unsqueeze(0) fgate = fgate.unsqueeze(1) # print(fgate.shape, relative_position_bias.shape) if hasattr(self, "fragment_position_bias_table"): relative_position_bias = ( relative_position_bias * fgate + fragment_position_bias * (1 - fgate) ) attn = attn.view( B_ // nW, nW, self.num_heads, N, N ) + relative_position_bias.unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) else: attn = attn + relative_position_bias.unsqueeze(0) # B_, nH, N, N if mask is not None: nW = mask.shape[0] attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze( 1 ).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) if B_ < 16: avg_attn = (attn.mean((1, 2)).detach(), attn.mean((1, 3)).detach()) else: avg_attn = None x = (attn @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) x = self.proj_drop(x) return x, avg_attn class SwinTransformerBlock3D(nn.Module): """Swin Transformer Block. Args: dim (int): Number of input channels. num_heads (int): Number of attention heads. window_size (tuple[int]): Window size. shift_size (tuple[int]): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__( self, dim, num_heads, window_size=(2, 7, 7), shift_size=(0, 0, 0), mlp_ratio=4.0, qkv_bias=True, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_checkpoint=False, jump_attention=False, frag_bias=False, ): super().__init__() self.dim = dim self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio self.use_checkpoint = use_checkpoint self.jump_attention = jump_attention self.frag_bias = frag_bias assert ( 0 <= self.shift_size[0] < self.window_size[0] ), "shift_size must in 0-window_size" assert ( 0 <= self.shift_size[1] < self.window_size[1] ), "shift_size must in 0-window_size" assert ( 0 <= self.shift_size[2] < self.window_size[2] ), "shift_size must in 0-window_size" self.norm1 = norm_layer(dim) self.attn = WindowAttention3D( dim, window_size=self.window_size, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, frag_bias=frag_bias, ) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, ) def forward_part1(self, x, mask_matrix): B, D, H, W, C = x.shape window_size, shift_size = get_window_size( (D, H, W), self.window_size, self.shift_size ) x = self.norm1(x) # pad feature maps to multiples of window size pad_l = pad_t = pad_d0 = 0 pad_d1 = (window_size[0] - D % window_size[0]) % window_size[0] pad_b = (window_size[1] - H % window_size[1]) % window_size[1] pad_r = (window_size[2] - W % window_size[2]) % window_size[2] x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b, pad_d0, pad_d1)) _, Dp, Hp, Wp, _ = x.shape if False: # not hasattr(self, 'finfo_windows'): finfo = fragment_infos(Dp, Hp, Wp) # cyclic shift if any(i > 0 for i in shift_size): shifted_x = torch.roll( x, shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), dims=(1, 2, 3), ) if False: # not hasattr(self, 'finfo_windows'): shifted_finfo = torch.roll( finfo, shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), dims=(1, 2, 3), ) attn_mask = mask_matrix else: shifted_x = x if False: # not hasattr(self, 'finfo_windows'): shifted_finfo = finfo attn_mask = None # partition windows x_windows = window_partition(shifted_x, window_size) # B*nW, Wd*Wh*Ww, C if False: # not hasattr(self, 'finfo_windows'): self.finfo_windows = window_partition(shifted_finfo, window_size) # W-MSA/SW-MSA # print(shift_size) gpi = global_position_index( Dp, Hp, Wp, window_size=window_size, shift_size=shift_size, device=x.device ) attn_windows, avg_attn = self.attn( x_windows, mask=attn_mask, fmask=gpi ) # self.finfo_windows) # B*nW, Wd*Wh*Ww, C # merge windows attn_windows = attn_windows.view(-1, *(window_size + (C,))) shifted_x = window_reverse( attn_windows, window_size, B, Dp, Hp, Wp ) # B D' H' W' C # reverse cyclic shift if any(i > 0 for i in shift_size): x = torch.roll( shifted_x, shifts=(shift_size[0], shift_size[1], shift_size[2]), dims=(1, 2, 3), ) else: x = shifted_x if pad_d1 > 0 or pad_r > 0 or pad_b > 0: x = x[:, :D, :H, :W, :].contiguous() return x, avg_attn def forward_part2(self, x): return self.drop_path(self.mlp(self.norm2(x))) def forward(self, x, mask_matrix): """Forward function. Args: x: Input feature, tensor size (B, D, H, W, C). mask_matrix: Attention mask for cyclic shift. """ shortcut = x if not self.jump_attention: if self.use_checkpoint: x = checkpoint.checkpoint(self.forward_part1, x, mask_matrix) else: x, avg_attn = self.forward_part1(x, mask_matrix) x = shortcut + self.drop_path(x) if self.use_checkpoint: x = x + checkpoint.checkpoint(self.forward_part2, x) else: x = x + self.forward_part2(x) return x, avg_attn class PatchMerging(nn.Module): """Patch Merging Layer Args: dim (int): Number of input channels. norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, dim, norm_layer=nn.LayerNorm): super().__init__() self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(4 * dim) def forward(self, x): """Forward function. Args: x: Input feature, tensor size (B, D, H, W, C). """ B, D, H, W, C = x.shape # padding pad_input = (H % 2 == 1) or (W % 2 == 1) if pad_input: x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2)) x0 = x[:, :, 0::2, 0::2, :] # B D H/2 W/2 C x1 = x[:, :, 1::2, 0::2, :] # B D H/2 W/2 C x2 = x[:, :, 0::2, 1::2, :] # B D H/2 W/2 C x3 = x[:, :, 1::2, 1::2, :] # B D H/2 W/2 C x = torch.cat([x0, x1, x2, x3], -1) # B D H/2 W/2 4*C x = self.norm(x) x = self.reduction(x) return x # cache each stage results @lru_cache() def compute_mask(D, H, W, window_size, shift_size, device): img_mask = torch.zeros((1, D, H, W, 1), device=device) # 1 Dp Hp Wp 1 cnt = 0 for d in ( slice(-window_size[0]), slice(-window_size[0], -shift_size[0]), slice(-shift_size[0], None), ): for h in ( slice(-window_size[1]), slice(-window_size[1], -shift_size[1]), slice(-shift_size[1], None), ): for w in ( slice(-window_size[2]), slice(-window_size[2], -shift_size[2]), slice(-shift_size[2], None), ): img_mask[:, d, h, w, :] = cnt cnt += 1 mask_windows = window_partition(img_mask, window_size) # nW, ws[0]*ws[1]*ws[2], 1 mask_windows = mask_windows.squeeze(-1) # nW, ws[0]*ws[1]*ws[2] attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill( attn_mask == 0, float(0.0) ) return attn_mask class BasicLayer(nn.Module): """A basic Swin Transformer layer for one stage. Args: dim (int): Number of feature channels depth (int): Depths of this stage. num_heads (int): Number of attention head. window_size (tuple[int]): Local window size. Default: (1,7,7). mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None """ def __init__( self, dim, depth, num_heads, window_size=(1, 7, 7), mlp_ratio=4.0, qkv_bias=False, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, jump_attention=False, frag_bias=False, ): super().__init__() self.window_size = window_size self.shift_size = tuple(i // 2 for i in window_size) self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList( [ SwinTransformerBlock3D( dim=dim, num_heads=num_heads, window_size=window_size, shift_size=(0, 0, 0) if (i % 2 == 0) else self.shift_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer, use_checkpoint=use_checkpoint, jump_attention=jump_attention, frag_bias=frag_bias, ) for i in range(depth) ] ) self.downsample = downsample if self.downsample is not None: self.downsample = downsample(dim=dim, norm_layer=norm_layer) def forward(self, x): """Forward function. Args: x: Input feature, tensor size (B, C, D, H, W). """ # calculate attention mask for SW-MSA B, C, D, H, W = x.shape window_size, shift_size = get_window_size( (D, H, W), self.window_size, self.shift_size ) x = rearrange(x, "b c d h w -> b d h w c") Dp = int(np.ceil(D / window_size[0])) * window_size[0] Hp = int(np.ceil(H / window_size[1])) * window_size[1] Wp = int(np.ceil(W / window_size[2])) * window_size[2] attn_mask = compute_mask(Dp, Hp, Wp, window_size, shift_size, x.device) avg_attns = [] for blk in self.blocks: x, avg_attn = blk(x, attn_mask) if avg_attn is not None: avg_attns.append(avg_attn) x = x.view(B, D, H, W, -1) if self.downsample is not None: x = self.downsample(x) x = rearrange(x, "b d h w c -> b c d h w") return x, avg_attns class PatchEmbed3D(nn.Module): """Video to Patch Embedding. Args: patch_size (int): Patch token size. Default: (2,4,4). in_chans (int): Number of input video channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None """ def __init__(self, patch_size=(2, 4, 4), in_chans=3, embed_dim=96, norm_layer=None): super().__init__() self.patch_size = patch_size self.in_chans = in_chans self.embed_dim = embed_dim self.proj = nn.Conv3d( in_chans, embed_dim, kernel_size=patch_size, stride=patch_size ) if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): """Forward function.""" # padding _, _, D, H, W = x.size() if W % self.patch_size[2] != 0: x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2])) if H % self.patch_size[1] != 0: x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1])) if D % self.patch_size[0] != 0: x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0])) x = self.proj(x) # B C D Wh Ww if self.norm is not None: D, Wh, Ww = x.size(2), x.size(3), x.size(4) x = x.flatten(2).transpose(1, 2) x = self.norm(x) x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww) return x class SwinTransformer3D(nn.Module): """Swin Transformer backbone. A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - https://arxiv.org/pdf/2103.14030 Args: patch_size (int | tuple(int)): Patch size. Default: (4,4,4). in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. depths (tuple[int]): Depths of each Swin Transformer stage. num_heads (tuple[int]): Number of attention head of each stage. window_size (int): Window size. Default: 7. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: Truee qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. drop_rate (float): Dropout rate. attn_drop_rate (float): Attention dropout rate. Default: 0. drop_path_rate (float): Stochastic depth rate. Default: 0.2. norm_layer: Normalization layer. Default: nn.LayerNorm. patch_norm (bool): If True, add normalization after patch embedding. Default: False. frozen_stages (int): Stages to be frozen (stop grad and set eval mode). -1 means not freezing any parameters. """ def __init__( self, pretrained=None, pretrained2d=False, patch_size=(2, 4, 4), in_chans=3, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=(8, 7, 7), mlp_ratio=4.0, qkv_bias=True, qk_scale=None, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.1, norm_layer=nn.LayerNorm, patch_norm=True, frozen_stages=-1, use_checkpoint=True, jump_attention=[False, False, False, False], frag_biases=[True, True, True, False], ): super().__init__() print(frag_biases) self.pretrained = pretrained self.pretrained2d = pretrained2d self.num_layers = len(depths) self.embed_dim = embed_dim self.patch_norm = patch_norm self.frozen_stages = frozen_stages self.window_size = window_size self.patch_size = patch_size # split image into non-overlapping patches self.patch_embed = PatchEmbed3D( patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None, ) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = [ x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) ] # stochastic depth decay rule # build layers self.layers = nn.ModuleList() for i_layer in range(self.num_layers): layer = BasicLayer( dim=int(embed_dim * 2 ** i_layer), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])], norm_layer=norm_layer, downsample=PatchMerging if i_layer < self.num_layers - 1 else None, use_checkpoint=use_checkpoint, jump_attention=jump_attention[i_layer], frag_bias=frag_biases[i_layer], ) self.layers.append(layer) self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) # add a norm layer for each output self.norm = norm_layer(self.num_features) self._freeze_stages() def _freeze_stages(self): if self.frozen_stages >= 0: self.patch_embed.eval() for param in self.patch_embed.parameters(): param.requires_grad = False if self.frozen_stages >= 1: self.pos_drop.eval() for i in range(0, self.frozen_stages): m = self.layers[i] m.eval() for param in m.parameters(): param.requires_grad = False def inflate_weights(self, logger): """Inflate the swin2d parameters to swin3d. The differences between swin3d and swin2d mainly lie in an extra axis. To utilize the pretrained parameters in 2d model, the weight of swin2d models should be inflated to fit in the shapes of the 3d counterpart. Args: logger (logging.Logger): The logger used to print debugging infomation. """ checkpoint = torch.load(self.pretrained, map_location="cpu") state_dict = checkpoint["model"] # delete relative_position_index since we always re-init it relative_position_index_keys = [ k for k in state_dict.keys() if "relative_position_index" in k ] for k in relative_position_index_keys: del state_dict[k] # delete attn_mask since we always re-init it attn_mask_keys = [k for k in state_dict.keys() if "attn_mask" in k] for k in attn_mask_keys: del state_dict[k] state_dict["patch_embed.proj.weight"] = ( state_dict["patch_embed.proj.weight"] .unsqueeze(2) .repeat(1, 1, self.patch_size[0], 1, 1) / self.patch_size[0] ) # bicubic interpolate relative_position_bias_table if not match relative_position_bias_table_keys = [ k for k in state_dict.keys() if "relative_position_bias_table" in k ] for k in relative_position_bias_table_keys: relative_position_bias_table_pretrained = state_dict[k] relative_position_bias_table_current = self.state_dict()[k] L1, nH1 = relative_position_bias_table_pretrained.size() L2, nH2 = relative_position_bias_table_current.size() L2 = (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1) wd = self.window_size[0] if nH1 != nH2: logger.warning(f"Error in loading {k}, passing") else: if L1 != L2: S1 = int(L1 ** 0.5) relative_position_bias_table_pretrained_resized = torch.nn.functional.interpolate( relative_position_bias_table_pretrained.permute(1, 0).view( 1, nH1, S1, S1 ), size=( 2 * self.window_size[1] - 1, 2 * self.window_size[2] - 1, ), mode="bicubic", ) relative_position_bias_table_pretrained = relative_position_bias_table_pretrained_resized.view( nH2, L2 ).permute( 1, 0 ) state_dict[k] = relative_position_bias_table_pretrained.repeat( 2 * wd - 1, 1 ) msg = self.load_state_dict(state_dict, strict=False) logger.info(msg) logger.info(f"=> loaded successfully '{self.pretrained}'") del checkpoint torch.cuda.empty_cache() def load_checkpoint(self, load_path, strict=False): from collections import OrderedDict model_state_dict = self.state_dict() state_dict = torch.load(load_path)["state_dict"] clean_dict = OrderedDict() for key, value in state_dict.items(): if "backbone" in key: clean_key = key[9:] clean_dict[clean_key] = value if "relative_position_bias_table" in clean_key: forked_key = clean_key.replace( "relative_position_bias_table", "fragment_position_bias_table" ) if forked_key in clean_dict: print( f"Passing key {forked_key} as it is already in state_dict." ) else: clean_dict[forked_key] = value ## Only Support for 2X for key, value in model_state_dict.items(): if key in clean_dict: if value.shape != clean_dict[key].shape: clean_dict.pop(key) self.load_state_dict(clean_dict, strict=strict) def init_weights(self, pretrained=None): print(self.pretrained, self.pretrained2d) """Initialize the weights in backbone. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ def _init_weights(m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) if pretrained: self.pretrained = pretrained if isinstance(self.pretrained, str): self.apply(_init_weights) logger = get_root_logger() logger.info(f"load model from: {self.pretrained}") if self.pretrained2d: # Inflate 2D model into 3D model. self.inflate_weights(logger) else: # Directly load 3D model. self.load_checkpoint(self.pretrained, strict=False) # , logger=logger) elif self.pretrained is None: self.apply(_init_weights) else: raise TypeError("pretrained must be a str or None") def forward(self, x, multi=False, require_attn=False): """Forward function.""" x = self.patch_embed(x) x = self.pos_drop(x) if multi: feats = [x] for layer in self.layers: x, avg_attns = layer(x.contiguous()) if multi: feats += [x] x = rearrange(x, "n c d h w -> n d h w c") x = self.norm(x) x = rearrange(x, "n d h w c -> n c d h w") if multi: x = feats[:-1] + [x] else: x = x if require_attn: return x, avg_attns else: return x def train(self, mode=True): """Convert the model into training mode while keep layers freezed.""" super(SwinTransformer3D, self).train(mode) self._freeze_stages()