import torch from torch.utils import data import numpy as np from os.path import join as pjoin import random import codecs as cs from tqdm import tqdm import utils.paramUtil as paramUtil from torch.utils.data._utils.collate import default_collate def collate_fn(batch): batch.sort(key=lambda x: x[3], reverse=True) return default_collate(batch) '''For use of training text-2-motion generative model''' class Text2MotionDataset(data.Dataset): def __init__(self, dataset_name, feat_bias = 5, unit_length = 4, codebook_size = 1024, tokenizer_name=None): self.max_length = 64 self.pointer = 0 self.dataset_name = dataset_name self.unit_length = unit_length # self.mot_start_idx = codebook_size self.mot_end_idx = codebook_size self.mot_pad_idx = codebook_size + 1 if dataset_name == 't2m': self.data_root = './dataset/HumanML3D' self.motion_dir = pjoin(self.data_root, 'new_joint_vecs') self.text_dir = pjoin(self.data_root, 'texts') self.joints_num = 22 radius = 4 fps = 20 self.max_motion_length = 26 if unit_length == 8 else 51 dim_pose = 263 kinematic_chain = paramUtil.t2m_kinematic_chain elif dataset_name == 'kit': self.data_root = './dataset/KIT-ML' self.motion_dir = pjoin(self.data_root, 'new_joint_vecs') self.text_dir = pjoin(self.data_root, 'texts') self.joints_num = 21 radius = 240 * 8 fps = 12.5 dim_pose = 251 self.max_motion_length = 26 if unit_length == 8 else 51 kinematic_chain = paramUtil.kit_kinematic_chain split_file = pjoin(self.data_root, 'train.txt') id_list = [] with cs.open(split_file, 'r') as f: for line in f.readlines(): id_list.append(line.strip()) new_name_list = [] data_dict = {} for name in tqdm(id_list): try: m_token_list = np.load(pjoin(self.data_root, tokenizer_name, '%s.npy'%name)) # Read text with cs.open(pjoin(self.text_dir, name + '.txt')) as f: text_data = [] flag = False lines = f.readlines() for line in lines: try: text_dict = {} line_split = line.strip().split('#') caption = line_split[0] t_tokens = line_split[1].split(' ') f_tag = float(line_split[2]) to_tag = float(line_split[3]) f_tag = 0.0 if np.isnan(f_tag) else f_tag to_tag = 0.0 if np.isnan(to_tag) else to_tag text_dict['caption'] = caption text_dict['tokens'] = t_tokens if f_tag == 0.0 and to_tag == 0.0: flag = True text_data.append(text_dict) else: m_token_list_new = [tokens[int(f_tag*fps/unit_length) : int(to_tag*fps/unit_length)] for tokens in m_token_list if int(f_tag*fps/unit_length) < int(to_tag*fps/unit_length)] if len(m_token_list_new) == 0: continue new_name = '%s_%f_%f'%(name, f_tag, to_tag) data_dict[new_name] = {'m_token_list': m_token_list_new, 'text':[text_dict]} new_name_list.append(new_name) except: pass if flag: data_dict[name] = {'m_token_list': m_token_list, 'text':text_data} new_name_list.append(name) except: pass self.data_dict = data_dict self.name_list = new_name_list def __len__(self): return len(self.data_dict) def __getitem__(self, item): data = self.data_dict[self.name_list[item]] m_token_list, text_list = data['m_token_list'], data['text'] m_tokens = random.choice(m_token_list) text_data = random.choice(text_list) caption= text_data['caption'] coin = np.random.choice([False, False, True]) # print(len(m_tokens)) if coin: # drop one token at the head or tail coin2 = np.random.choice([True, False]) if coin2: m_tokens = m_tokens[:-1] else: m_tokens = m_tokens[1:] m_tokens_len = m_tokens.shape[0] if m_tokens_len+1 < self.max_motion_length: m_tokens = np.concatenate([m_tokens, np.ones((1), dtype=int) * self.mot_end_idx, np.ones((self.max_motion_length-1-m_tokens_len), dtype=int) * self.mot_pad_idx], axis=0) else: m_tokens = np.concatenate([m_tokens, np.ones((1), dtype=int) * self.mot_end_idx], axis=0) return caption, m_tokens.reshape(-1), m_tokens_len def DATALoader(dataset_name, batch_size, codebook_size, tokenizer_name, unit_length=4, num_workers = 8) : train_loader = torch.utils.data.DataLoader(Text2MotionDataset(dataset_name, codebook_size = codebook_size, tokenizer_name = tokenizer_name, unit_length=unit_length), batch_size, shuffle=True, num_workers=num_workers, #collate_fn=collate_fn, drop_last = True) return train_loader def cycle(iterable): while True: for x in iterable: yield x