import os import json import torch from torch.utils.tensorboard import SummaryWriter import numpy as np import models.vqvae as vqvae import options.option_vq as option_vq import utils.utils_model as utils_model from dataset import dataset_TM_eval import utils.eval_trans as eval_trans from options.get_eval_option import get_opt from models.evaluator_wrapper import EvaluatorModelWrapper import warnings warnings.filterwarnings('ignore') import numpy as np ##### ---- Exp dirs ---- ##### args = option_vq.get_args_parser() torch.manual_seed(args.seed) args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}') os.makedirs(args.out_dir, exist_ok = True) ##### ---- Logger ---- ##### logger = utils_model.get_logger(args.out_dir) writer = SummaryWriter(args.out_dir) logger.info(json.dumps(vars(args), indent=4, sort_keys=True)) from utils.word_vectorizer import WordVectorizer w_vectorizer = WordVectorizer('./glove', 'our_vab') dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if args.dataname == 'kit' else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt' wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda')) eval_wrapper = EvaluatorModelWrapper(wrapper_opt) ##### ---- Dataloader ---- ##### args.nb_joints = 21 if args.dataname == 'kit' else 22 val_loader = dataset_TM_eval.DATALoader(args.dataname, True, 32, w_vectorizer, unit_length=2**args.down_t) ##### ---- Network ---- ##### net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers args.nb_code, args.code_dim, args.output_emb_width, args.down_t, args.stride_t, args.width, args.depth, args.dilation_growth_rate, args.vq_act, args.vq_norm) if args.resume_pth : logger.info('loading checkpoint from {}'.format(args.resume_pth)) ckpt = torch.load(args.resume_pth, map_location='cpu') net.load_state_dict(ckpt['net'], strict=True) net.train() net.cuda() fid = [] div = [] top1 = [] top2 = [] top3 = [] matching = [] repeat_time = 20 for i in range(repeat_time): best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_vqvae(args.out_dir, val_loader, net, logger, writer, 0, best_fid=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, eval_wrapper=eval_wrapper, draw=False, save=False, savenpy=(i==0)) fid.append(best_fid) div.append(best_div) top1.append(best_top1) top2.append(best_top2) top3.append(best_top3) matching.append(best_matching) print('final result:') print('fid: ', sum(fid)/repeat_time) print('div: ', sum(div)/repeat_time) print('top1: ', sum(top1)/repeat_time) print('top2: ', sum(top2)/repeat_time) print('top3: ', sum(top3)/repeat_time) print('matching: ', sum(matching)/repeat_time) fid = np.array(fid) div = np.array(div) top1 = np.array(top1) top2 = np.array(top2) top3 = np.array(top3) matching = np.array(matching) msg_final = f"FID. {np.mean(fid):.3f}, conf. {np.std(fid)*1.96/np.sqrt(repeat_time):.3f}, Diversity. {np.mean(div):.3f}, conf. {np.std(div)*1.96/np.sqrt(repeat_time):.3f}, TOP1. {np.mean(top1):.3f}, conf. {np.std(top1)*1.96/np.sqrt(repeat_time):.3f}, TOP2. {np.mean(top2):.3f}, conf. {np.std(top2)*1.96/np.sqrt(repeat_time):.3f}, TOP3. {np.mean(top3):.3f}, conf. {np.std(top3)*1.96/np.sqrt(repeat_time):.3f}, Matching. {np.mean(matching):.3f}, conf. {np.std(matching)*1.96/np.sqrt(repeat_time):.3f}" logger.info(msg_final)