import os import torch import numpy as np from torch.utils.tensorboard import SummaryWriter from os.path import join as pjoin from torch.distributions import Categorical import json import clip import options.option_transformer as option_trans import models.vqvae as vqvae import utils.utils_model as utils_model import utils.eval_trans as eval_trans from dataset import dataset_TM_train from dataset import dataset_TM_eval from dataset import dataset_tokenize import models.t2m_trans as trans from options.get_eval_option import get_opt from models.evaluator_wrapper import EvaluatorModelWrapper import warnings warnings.filterwarnings('ignore') ##### ---- Exp dirs ---- ##### args = option_trans.get_args_parser() torch.manual_seed(args.seed) args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}') args.vq_dir= os.path.join("./dataset/KIT-ML" if args.dataname == 'kit' else "./dataset/HumanML3D", f'{args.vq_name}') os.makedirs(args.out_dir, exist_ok = True) os.makedirs(args.vq_dir, exist_ok = True) ##### ---- Logger ---- ##### logger = utils_model.get_logger(args.out_dir) writer = SummaryWriter(args.out_dir) logger.info(json.dumps(vars(args), indent=4, sort_keys=True)) ##### ---- Dataloader ---- ##### train_loader_token = dataset_tokenize.DATALoader(args.dataname, 1, unit_length=2**args.down_t) from utils.word_vectorizer import WordVectorizer w_vectorizer = WordVectorizer('./glove', 'our_vab') val_loader = dataset_TM_eval.DATALoader(args.dataname, False, 32, w_vectorizer) dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if args.dataname == 'kit' else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt' wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda')) eval_wrapper = EvaluatorModelWrapper(wrapper_opt) ##### ---- Network ---- ##### clip_model, clip_preprocess = clip.load("ViT-B/32", device=torch.device('cuda'), jit=False, download_root='/apdcephfs_cq2/share_1290939/maelyszhang/.cache/clip') # Must set jit=False for training clip.model.convert_weights(clip_model) # Actually this line is unnecessary since clip by default already on float16 clip_model.eval() for p in clip_model.parameters(): p.requires_grad = False net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers args.nb_code, args.code_dim, args.output_emb_width, args.down_t, args.stride_t, args.width, args.depth, args.dilation_growth_rate) trans_encoder = trans.Text2Motion_Transformer(num_vq=args.nb_code, embed_dim=args.embed_dim_gpt, clip_dim=args.clip_dim, block_size=args.block_size, num_layers=args.num_layers, n_head=args.n_head_gpt, drop_out_rate=args.drop_out_rate, fc_rate=args.ff_rate) print ('loading checkpoint from {}'.format(args.resume_pth)) ckpt = torch.load(args.resume_pth, map_location='cpu') net.load_state_dict(ckpt['net'], strict=True) net.eval() net.cuda() if args.resume_trans is not None: print ('loading transformer checkpoint from {}'.format(args.resume_trans)) ckpt = torch.load(args.resume_trans, map_location='cpu') trans_encoder.load_state_dict(ckpt['trans'], strict=True) trans_encoder.train() trans_encoder.cuda() ##### ---- Optimizer & Scheduler ---- ##### optimizer = utils_model.initial_optim(args.decay_option, args.lr, args.weight_decay, trans_encoder, args.optimizer) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_scheduler, gamma=args.gamma) ##### ---- Optimization goals ---- ##### loss_ce = torch.nn.CrossEntropyLoss() nb_iter, avg_loss_cls, avg_acc = 0, 0., 0. right_num = 0 nb_sample_train = 0 ##### ---- get code ---- ##### for batch in train_loader_token: pose, name = batch bs, seq = pose.shape[0], pose.shape[1] pose = pose.cuda().float() # bs, nb_joints, joints_dim, seq_len target = net.encode(pose) target = target.cpu().numpy() np.save(pjoin(args.vq_dir, name[0] +'.npy'), target) train_loader = dataset_TM_train.DATALoader(args.dataname, args.batch_size, args.nb_code, args.vq_name, unit_length=2**args.down_t) train_loader_iter = dataset_TM_train.cycle(train_loader) ##### ---- Training ---- ##### best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_transformer(args.out_dir, val_loader, net, trans_encoder, logger, writer, 0, best_fid=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, clip_model=clip_model, eval_wrapper=eval_wrapper) while nb_iter <= args.total_iter: batch = next(train_loader_iter) clip_text, m_tokens, m_tokens_len = batch m_tokens, m_tokens_len = m_tokens.cuda(), m_tokens_len.cuda() bs = m_tokens.shape[0] target = m_tokens # (bs, 26) target = target.cuda() text = clip.tokenize(clip_text, truncate=True).cuda() feat_clip_text = clip_model.encode_text(text).float() input_index = target[:,:-1] if args.pkeep == -1: proba = np.random.rand(1)[0] mask = torch.bernoulli(proba * torch.ones(input_index.shape, device=input_index.device)) else: mask = torch.bernoulli(args.pkeep * torch.ones(input_index.shape, device=input_index.device)) mask = mask.round().to(dtype=torch.int64) r_indices = torch.randint_like(input_index, args.nb_code) a_indices = mask*input_index+(1-mask)*r_indices cls_pred = trans_encoder(a_indices, feat_clip_text) cls_pred = cls_pred.contiguous() loss_cls = 0.0 for i in range(bs): # loss function (26), (26, 513) loss_cls += loss_ce(cls_pred[i][:m_tokens_len[i] + 1], target[i][:m_tokens_len[i] + 1]) / bs # Accuracy probs = torch.softmax(cls_pred[i][:m_tokens_len[i] + 1], dim=-1) if args.if_maxtest: _, cls_pred_index = torch.max(probs, dim=-1) else: dist = Categorical(probs) cls_pred_index = dist.sample() right_num += (cls_pred_index.flatten(0) == target[i][:m_tokens_len[i] + 1].flatten(0)).sum().item() ## global loss optimizer.zero_grad() loss_cls.backward() optimizer.step() scheduler.step() avg_loss_cls = avg_loss_cls + loss_cls.item() nb_sample_train = nb_sample_train + (m_tokens_len + 1).sum().item() nb_iter += 1 if nb_iter % args.print_iter == 0 : avg_loss_cls = avg_loss_cls / args.print_iter avg_acc = right_num * 100 / nb_sample_train writer.add_scalar('./Loss/train', avg_loss_cls, nb_iter) writer.add_scalar('./ACC/train', avg_acc, nb_iter) msg = f"Train. Iter {nb_iter} : Loss. {avg_loss_cls:.5f}, ACC. {avg_acc:.4f}" logger.info(msg) avg_loss_cls = 0. right_num = 0 nb_sample_train = 0 if nb_iter % args.eval_iter == 0: best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_transformer(args.out_dir, val_loader, net, trans_encoder, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, clip_model=clip_model, eval_wrapper=eval_wrapper) if nb_iter == args.total_iter: msg_final = f"Train. Iter {best_iter} : FID. {best_fid:.5f}, Diversity. {best_div:.4f}, TOP1. {best_top1:.4f}, TOP2. {best_top2:.4f}, TOP3. {best_top3:.4f}" logger.info(msg_final) break