import sys import os import OpenGL.GL as gl os.environ["PYOPENGL_PLATFORM"] = "egl" os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1" os.system('pip install /home/user/app/pyrender') sys.argv = ['VQ-Trans/GPT_eval_multi.py'] os.chdir('VQ-Trans') sys.path.append('/home/user/app/VQ-Trans') sys.path.append('/home/user/app/pyrender') import options.option_transformer as option_trans from huggingface_hub import snapshot_download model_path = snapshot_download(repo_id="vumichien/T2M-GPT") args = option_trans.get_args_parser() args.dataname = 't2m' args.resume_pth = f'{model_path}/VQVAE/net_last.pth' args.resume_trans = f'{model_path}/VQTransformer_corruption05/net_best_fid.pth' args.down_t = 2 args.depth = 3 args.block_size = 51 import clip import torch import numpy as np import models.vqvae as vqvae import models.t2m_trans as trans from utils.motion_process import recover_from_ric import visualization.plot_3d_global as plot_3d from models.rotation2xyz import Rotation2xyz import numpy as np from trimesh import Trimesh import gc import torch from visualize.simplify_loc2rot import joints2smpl import pyrender # import matplotlib.pyplot as plt import io import imageio from shapely import geometry import trimesh from pyrender.constants import RenderFlags import math # import ffmpeg # from PIL import Image import hashlib import gradio as gr import moviepy.editor as mp ## load clip model and datasets is_cuda = torch.cuda.is_available() device = torch.device("cuda" if is_cuda else "cpu") print(device) clip_model, clip_preprocess = clip.load("ViT-B/32", device=device, jit=False, download_root='./') # Must set jit=False for training if is_cuda: clip.model.convert_weights(clip_model) clip_model.eval() for p in clip_model.parameters(): p.requires_grad = False net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers args.nb_code, args.code_dim, args.output_emb_width, args.down_t, args.stride_t, args.width, args.depth, args.dilation_growth_rate) trans_encoder = trans.Text2Motion_Transformer(num_vq=args.nb_code, embed_dim=1024, clip_dim=args.clip_dim, block_size=args.block_size, num_layers=9, n_head=16, drop_out_rate=args.drop_out_rate, fc_rate=args.ff_rate) print('loading checkpoint from {}'.format(args.resume_pth)) ckpt = torch.load(args.resume_pth, map_location='cpu') net.load_state_dict(ckpt['net'], strict=True) net.eval() print('loading transformer checkpoint from {}'.format(args.resume_trans)) ckpt = torch.load(args.resume_trans, map_location='cpu') trans_encoder.load_state_dict(ckpt['trans'], strict=True) trans_encoder.eval() mean = torch.from_numpy(np.load(f'{model_path}/meta/mean.npy')) std = torch.from_numpy(np.load(f'{model_path}/meta/std.npy')) if is_cuda: net.cuda() trans_encoder.cuda() mean = mean.cuda() std = std.cuda() def render(motions, device_id=0, name='test_vis'): frames, njoints, nfeats = motions.shape MINS = motions.min(axis=0).min(axis=0) MAXS = motions.max(axis=0).max(axis=0) height_offset = MINS[1] motions[:, :, 1] -= height_offset trajec = motions[:, 0, [0, 2]] is_cuda = torch.cuda.is_available() # device = torch.device("cuda" if is_cuda else "cpu") j2s = joints2smpl(num_frames=frames, device_id=0, cuda=is_cuda) rot2xyz = Rotation2xyz(device=device) faces = rot2xyz.smpl_model.faces if not os.path.exists(f'output/{name}_pred.pt'): print(f'Running SMPLify, it may take a few minutes.') motion_tensor, opt_dict = j2s.joint2smpl(motions) # [nframes, njoints, 3] vertices = rot2xyz(torch.tensor(motion_tensor).clone(), mask=None, pose_rep='rot6d', translation=True, glob=True, jointstype='vertices', vertstrans=True) vertices = vertices.detach().cpu() torch.save(vertices, f'output/{name}_pred.pt') else: vertices = torch.load(f'output/{name}_pred.pt') frames = vertices.shape[3] # shape: 1, nb_frames, 3, nb_joints print(vertices.shape) MINS = torch.min(torch.min(vertices[0], axis=0)[0], axis=1)[0] MAXS = torch.max(torch.max(vertices[0], axis=0)[0], axis=1)[0] out_list = [] minx = MINS[0] - 0.5 maxx = MAXS[0] + 0.5 minz = MINS[2] - 0.5 maxz = MAXS[2] + 0.5 polygon = geometry.Polygon([[minx, minz], [minx, maxz], [maxx, maxz], [maxx, minz]]) polygon_mesh = trimesh.creation.extrude_polygon(polygon, 1e-5) vid = [] for i in range(frames): if i % 10 == 0: print(i) mesh = Trimesh(vertices=vertices[0, :, :, i].squeeze().tolist(), faces=faces) base_color = (0.11, 0.53, 0.8, 0.5) ## OPAQUE rendering without alpha ## BLEND rendering consider alpha material = pyrender.MetallicRoughnessMaterial( metallicFactor=0.7, alphaMode='OPAQUE', baseColorFactor=base_color ) mesh = pyrender.Mesh.from_trimesh(mesh, material=material) polygon_mesh.visual.face_colors = [0, 0, 0, 0.21] polygon_render = pyrender.Mesh.from_trimesh(polygon_mesh, smooth=False) bg_color = [1, 1, 1, 0.8] scene = pyrender.Scene(bg_color=bg_color, ambient_light=(0.4, 0.4, 0.4)) sx, sy, tx, ty = [0.75, 0.75, 0, 0.10] camera = pyrender.PerspectiveCamera(yfov=(np.pi / 3.0)) light = pyrender.DirectionalLight(color=[1,1,1], intensity=300) scene.add(mesh) c = np.pi / 2 scene.add(polygon_render, pose=np.array([[ 1, 0, 0, 0], [ 0, np.cos(c), -np.sin(c), MINS[1].cpu().numpy()], [ 0, np.sin(c), np.cos(c), 0], [ 0, 0, 0, 1]])) light_pose = np.eye(4) light_pose[:3, 3] = [0, -1, 1] scene.add(light, pose=light_pose.copy()) light_pose[:3, 3] = [0, 1, 1] scene.add(light, pose=light_pose.copy()) light_pose[:3, 3] = [1, 1, 2] scene.add(light, pose=light_pose.copy()) c = -np.pi / 6 scene.add(camera, pose=[[ 1, 0, 0, (minx+maxx).cpu().numpy()/2], [ 0, np.cos(c), -np.sin(c), 1.5], [ 0, np.sin(c), np.cos(c), max(4, minz.cpu().numpy()+(1.5-MINS[1].cpu().numpy())*2, (maxx-minx).cpu().numpy())], [ 0, 0, 0, 1] ]) # render scene r = pyrender.OffscreenRenderer(960, 960) color, _ = r.render(scene, flags=RenderFlags.RGBA) # Image.fromarray(color).save(outdir+'/'+name+'_'+str(i)+'.png') vid.append(color) r.delete() out = np.stack(vid, axis=0) imageio.mimwrite(f'output/results.gif', out, fps=20) out_video = mp.VideoFileClip(f'output/results.gif') out_video.write_videofile("output/results.mp4") del out, vertices return f'output/results.mp4' def predict(clip_text, method='fast'): gc.collect() if torch.cuda.is_available(): text = clip.tokenize([clip_text], truncate=True).cuda() else: text = clip.tokenize([clip_text], truncate=True) feat_clip_text = clip_model.encode_text(text).float() index_motion = trans_encoder.sample(feat_clip_text[0:1], False) pred_pose = net.forward_decoder(index_motion) pred_xyz = recover_from_ric((pred_pose*std+mean).float(), 22) output_name = hashlib.md5(clip_text.encode()).hexdigest() if method == 'fast': xyz = pred_xyz.reshape(1, -1, 22, 3) pose_vis = plot_3d.draw_to_batch(xyz.detach().cpu().numpy(), title_batch=None, outname=[f'output/results.gif']) out_video = mp.VideoFileClip("output/results.gif") out_video.write_videofile("output/results.mp4") return f'output/results.mp4' elif method == 'slow': output_path = render(pred_xyz.detach().cpu().numpy().squeeze(axis=0), device_id=0, name=output_name) return output_path # ---- Gradio Layout ----- text_prompt = gr.Textbox(label="Text prompt", lines=1, interactive=True) video_out = gr.Video(label="Motion", mirror_webcam=False, interactive=False) demo = gr.Blocks() demo.encrypt = False with demo: gr.Markdown('''

Generating Human Motion from Textual Descriptions (T2M-GPT)

This space uses T2M-GPT models based on Vector Quantised-Variational AutoEncoder (VQ-VAE) and Generative Pre-trained Transformer (GPT) for human motion generation from textural descriptions🤗
''') with gr.Row(): with gr.Column(): gr.Markdown('''
Demo Slow
a man starts off in an up right position with botg arms extended out by his sides, he then brings his arms down to his body and claps his hands together. after this he wals down amd the the left where he proceeds to sit on a seat
''') with gr.Column(): gr.Markdown('''
Demo Slow 2
a person puts their hands together, leans forwards slightly then swings the arms from right to left
''') with gr.Column(): gr.Markdown('''
Demo Slow 3
a man is practicing the waltz with a partner
''') with gr.Row(): with gr.Column(): gr.Markdown(''' ### Generate human motion by **T2M-GPT** ##### Step 1. Give prompt text describing human motion ##### Step 2. Choice method to render output (Fast: Sketch skeleton; Slow: SMPL mesh, only work with GPU and running time around 2 mins) ##### Step 3. Generate output and enjoy ''') with gr.Column(): with gr.Row(): text_prompt.render() method = gr.Dropdown(["slow", "fast"], label="Method", value="slow") with gr.Row(): generate_btn = gr.Button("Generate") generate_btn.click(predict, [text_prompt, method], [video_out], api_name="generate") print(video_out) with gr.Row(): video_out.render() with gr.Row(): gr.Markdown(''' ### You can test by following examples: ''') examples = gr.Examples(examples= [ "a person jogs in place, slowly at first, then increases speed. they then back up and squat down.", "a man steps forward and does a handstand", "a man rises from the ground, walks in a circle and sits back down on the ground"], label="Examples", inputs=[text_prompt]) demo.launch(debug=True)