import transformers
import torch
import gradio as gr
import requests
from transformers import BlipForImageTextRetrieval
from transformers import AutoProcessor
from transformers.utils import logging
from PIL import Image
logging.set_verbosity_error()
model = BlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-base-coco")
processor = AutoProcessor.from_pretrained("Salesforce/blip-itm-base-coco")
def process_image(input_type, image_url, image_upload, text):
if input_type == "URL":
raw_image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB')
else:
raw_image = image_upload
inputs = processor(images=raw_image, text=text, return_tensors="pt")
itm_scores = model(**inputs)[0]
itm_score = torch.nn.functional.softmax(itm_scores,dim=1)
itm_score = itm_score[0][1]
print(itm_score)
if itm_score <=.35:
cmnt = "which is not that great. Try again."
elif itm_score <= .75:
cmnt = "which is good. But you can improve it. Try again."
elif itm_score == 1.0:
cmnt = "and that is an unbelievable perfect score. You have achieved the near impossible. Congratulations"
else:
cmnt = "which is excellent. Can you improve on it?"
formatted_text = (
f"""
Your decription score is {itm_score*100:.2f}/100 {cmnt}
"""
)
return formatted_text
def display_image_from_url(image_url):
if image_url:
image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB')
return image
return None
def toggle_inputs(input_type):
if input_type == "URL":
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
with gr.Blocks() as demo:
gr.Markdown(
"""
# Challenge yourself by describing the image - test & demo app by Srinivas.V..
Paste either URL of an image or upload the image, describe the image best and submit to know your score.
""")
input_type = gr.Radio(choices=["URL", "Upload"], label="Input Type")
image_url = gr.Textbox(label="Image URL", visible=False)
url_image = gr.Image(type="pil", label="URL Image", visible=False)
image_upload = gr.Image(type="pil", label="Upload Image", visible=False)
description = gr.Textbox(label="Describe the image", visible=False, lines=3)
input_type.change(fn=toggle_inputs, inputs=input_type, outputs=[image_url, url_image, image_upload, description])
image_url.change(fn=display_image_from_url, inputs=image_url, outputs=url_image)
submit_btn = gr.Button("Submit")
processed_image = gr.HTML(label="Your challenge result")
submit_btn.click(fn=process_image, inputs=[input_type, image_url, image_upload, description], outputs=processed_image)
demo.launch(debug=True, share=True)