import gradio as gr from transformers import AutoTokenizer import ast model_path = "models/" import gradio as gr # Available models MODELS = ["Meta-Llama-3.1-8B"] def process_input(input_type, input_value, model_name): # Initialize tokenizer tokenizer = AutoTokenizer.from_pretrained(model_path+model_name) if input_type == "Text": character_count = len(input_value) # Tokenize the text token_ids = tokenizer.encode(input_value,add_special_tokens=True) tokens = tokenizer.convert_ids_to_tokens(token_ids) return len(tokens),character_count, tokens, token_ids elif input_type == "Token IDs": try: token_ids = ast.literal_eval(input_value) # Convert token IDs back to text text = tokenizer.decode(token_ids) # Create output strings return len(token_ids),len(token_ids), text, input_value, except ValueError: return "Error", "Invalid input. Please enter space-separated integers for Token IDs.", "" # Create Gradio interface iface = gr.Interface( fn=process_input, inputs=[ gr.Radio(["Text", "Token IDs"], label="Input Type", value="Text"), gr.Textbox(lines=5, label="Input"), gr.Dropdown(choices=MODELS, label="Select Model") ], outputs=[ gr.Textbox(label="Token Count"), gr.Textbox(label="Character Count"), gr.Textbox(label="Tokens", lines=10), gr.Textbox(label="Token IDS", lines=5) ], title="LLM Tokenization - Convert Text to tokens and vice versa!", description="Enter text or token IDs and select a model to see the results." ) if __name__ == "__main__": iface.queue() iface.launch()