# # import gradio as gr # # gr.load("models/vm24bho/net_dfm_myimg").launch() # import gradio as gr # # Load your model (this is a placeholder; replace with your actual model loading code) # demo = gr.load("models/vm24bho/net_dfm_myimg") # # Customize the interface # css = """ # body { # background-color: #f5f5f5; # font-family: 'Arial', sans-serif; # } # .container { # max-width: 800px; # margin: 0 auto; # padding: 20px; # background-color: #ffffff; # border-radius: 10px; # box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); # } # .header { # text-align: center; # padding-bottom: 20px; # } # h1 { # color: #333333; # } # p { # color: #666666; # } # .gradio-container { # display: flex; # flex-direction: column; # gap: 20px; # } # button { # background-color: #007bff; # color: white; # border: none; # padding: 10px 20px; # border-radius: 5px; # cursor: pointer; # font-size: 16px; # } # button:hover { # background-color: #0056b3; # } # """ # demo.launch( # title="Deepfake Detection", # description="A interface for interacting with the VM24BHO model.", # article=""" #
#
#

Welcome to the VM24BHO Model Interface

#

Use this interface to interact with the deep learning model.

#
#
# #
#
# """, # css=css # ) import gradio as gr # Load your model (assuming the path is correct) demo = gr.load("models/vm24bho/net_dfm_myimg") # Custom CSS styling css = """ body { background-color: #f5f5f5; font-family: 'Arial', sans-serif; } .container { max-width: 800px; margin: 0 auto; padding: 20px; background-color: #ffffff; border-radius: 10px; box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); } .header { text-align: center; padding-bottom: 20px; } h1 { color: #333333; } p { color: #666666; } .gradio-container { display: flex; flex-direction: column; gap: 20px; } button { background-color: #007bff; color: white; border: none; padding: 10px 20px; border-radius: 5px; cursor: pointer; font-size: 16px; } button:hover { background-color: #0056b3; } """ # Creating the Gradio interface with gr.Blocks(css=css) as demo: gr.Markdown( """

Welcome to the Deepfake detection Model Interface

Use this interface to interact with the deep learning model.

""" ) # Assuming your model has a specific input/output interface # Adjust this part according to your actual model's input/output gr.Interface.load("models/vm24bho/net_dfm_myimg") # Launch the Gradio interface demo.launch()