import streamlit as st from PIL import Image import requests from transformers import pipeline # Load the pipeline model_name = "vm24bho/net_dfm_myimg" pipe = pipeline('image-classification', model=model_name) st.title("Deepfake vs Real Image Detection") uploaded_file = st.file_uploader("Choose an image...", type="jpg") if uploaded_file is not None: image = Image.open(uploaded_file) st.image(image, caption='Uploaded Image.', use_column_width=True) st.write("") st.write("Classifying...") # Apply the model result = pipe(image) # Display the result st.write("**Classification Result:**") st.write("---------------") for i, res in enumerate(result): label = res["label"] score = res["score"] * 100 # Convert to percentage st.write(f"**{i+1}. {label}**: {score:.2f}%") st.write("---------------") # Determine the majority score real_score = result[0]["score"] * 100 fake_score = result[1]["score"] * 100 if real_score > fake_score: majority_label = "Real" else: majority_label = "Fake" # Display the final result st.write(f"**Given image is {majority_label}**")