# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F from paddleseg.cvlibs import manager import cv2 @manager.LOSSES.add_component class MRSD(nn.Layer): def __init__(self, eps=1e-6): super().__init__() self.eps = eps def forward(self, logit, label, mask=None): """ Forward computation. Args: logit (Tensor): Logit tensor, the data type is float32, float64. label (Tensor): Label tensor, the data type is float32, float64. The shape should equal to logit. mask (Tensor, optional): The mask where the loss valid. Default: None. """ if len(label.shape) == 3: label = label.unsqueeze(1) sd = paddle.square(logit - label) loss = paddle.sqrt(sd + self.eps) if mask is not None: mask = mask.astype('float32') if len(mask.shape) == 3: mask = mask.unsqueeze(1) loss = loss * mask loss = loss.sum() / (mask.sum() + self.eps) mask.stop_gradient = True else: loss = loss.mean() return loss @manager.LOSSES.add_component class GradientLoss(nn.Layer): def __init__(self, eps=1e-6): super().__init__() self.kernel_x, self.kernel_y = self.sobel_kernel() self.eps = eps def forward(self, logit, label, mask=None): if len(label.shape) == 3: label = label.unsqueeze(1) if mask is not None: if len(mask.shape) == 3: mask = mask.unsqueeze(1) logit = logit * mask label = label * mask loss = paddle.sum( F.l1_loss(self.sobel(logit), self.sobel(label), 'none')) / ( mask.sum() + self.eps) else: loss = F.l1_loss(self.sobel(logit), self.sobel(label), 'mean') return loss def sobel(self, input): """Using Sobel to compute gradient. Return the magnitude.""" if not len(input.shape) == 4: raise ValueError("Invalid input shape, we expect NCHW, but it is ", input.shape) n, c, h, w = input.shape input_pad = paddle.reshape(input, (n * c, 1, h, w)) input_pad = F.pad(input_pad, pad=[1, 1, 1, 1], mode='replicate') grad_x = F.conv2d(input_pad, self.kernel_x, padding=0) grad_y = F.conv2d(input_pad, self.kernel_y, padding=0) mag = paddle.sqrt(grad_x * grad_x + grad_y * grad_y + self.eps) mag = paddle.reshape(mag, (n, c, h, w)) return mag def sobel_kernel(self): kernel_x = paddle.to_tensor([[-1.0, 0.0, 1.0], [-2.0, 0.0, 2.0], [-1.0, 0.0, 1.0]]).astype('float32') kernel_x = kernel_x / kernel_x.abs().sum() kernel_y = kernel_x.transpose([1, 0]) kernel_x = kernel_x.unsqueeze(0).unsqueeze(0) kernel_y = kernel_y.unsqueeze(0).unsqueeze(0) kernel_x.stop_gradient = True kernel_y.stop_gradient = True return kernel_x, kernel_y @manager.LOSSES.add_component class LaplacianLoss(nn.Layer): """ Laplacian loss is refer to https://github.com/JizhiziLi/AIM/blob/master/core/evaluate.py#L83 """ def __init__(self): super().__init__() self.gauss_kernel = self.build_gauss_kernel( size=5, sigma=1.0, n_channels=1) def forward(self, logit, label, mask=None): if len(label.shape) == 3: label = label.unsqueeze(1) if mask is not None: if len(mask.shape) == 3: mask = mask.unsqueeze(1) logit = logit * mask label = label * mask pyr_label = self.laplacian_pyramid(label, self.gauss_kernel, 5) pyr_logit = self.laplacian_pyramid(logit, self.gauss_kernel, 5) loss = sum(F.l1_loss(a, b) for a, b in zip(pyr_label, pyr_logit)) return loss def build_gauss_kernel(self, size=5, sigma=1.0, n_channels=1): if size % 2 != 1: raise ValueError("kernel size must be uneven") grid = np.float32(np.mgrid[0:size, 0:size].T) gaussian = lambda x: np.exp((x - size // 2)**2 / (-2 * sigma**2))**2 kernel = np.sum(gaussian(grid), axis=2) kernel /= np.sum(kernel) kernel = np.tile(kernel, (n_channels, 1, 1)) kernel = paddle.to_tensor(kernel[:, None, :, :]) kernel.stop_gradient = True return kernel def conv_gauss(self, input, kernel): n_channels, _, kh, kw = kernel.shape x = F.pad(input, (kh // 2, kw // 2, kh // 2, kh // 2), mode='replicate') x = F.conv2d(x, kernel, groups=n_channels) return x def laplacian_pyramid(self, input, kernel, max_levels=5): current = input pyr = [] for level in range(max_levels): filtered = self.conv_gauss(current, kernel) diff = current - filtered pyr.append(diff) current = F.avg_pool2d(filtered, 2) pyr.append(current) return pyr