batch_size: 4 iters: 300000 train_dataset: type: MattingDataset dataset_root: data/matting/Distinctions-646 train_file: train.txt transforms: - type: LoadImages - type: Padding target_size: [512, 512] - type: RandomCrop crop_size: [[512, 512],[640, 640], [800, 800]] - type: Resize target_size: [512, 512] - type: RandomDistort - type: RandomBlur prob: 0.1 - type: RandomHorizontalFlip - type: Normalize mode: train separator: '|' val_dataset: type: MattingDataset dataset_root: data/matting/Distinctions-646 val_file: val.txt transforms: - type: LoadImages - type: LimitShort max_short: 1536 - type: ResizeToIntMult mult_int: 32 - type: Normalize mode: val get_trimap: False separator: '|' model: type: PPMatting backbone: type: HRNet_W48 # pretrained: https://bj.bcebos.com/paddleseg/dygraph/hrnet_w48_ssld.tar.gz pretrained: Null optimizer: type: sgd momentum: 0.9 weight_decay: 4.0e-5 lr_scheduler: type: PolynomialDecay learning_rate: 0.01 end_lr: 0 power: 0.9