import torch from .utils_model import BetaSchedules, SigmaSchedule, ModelSamplingType, ModelSamplingConfig, InterpolationMethod def validate_sigma_schedule_compatibility(schedule_A: SigmaSchedule, schedule_B: SigmaSchedule, name_a: str="sigma_schedule_A", name_b: str="sigma_schedule_B"): if schedule_A.total_sigmas() != schedule_B.total_sigmas(): raise Exception(f"Weighted Average cannot be taken of Sigma Schedules that do not have the same amount of sigmas; " + f"{name_a} has {schedule_A.total_sigmas()} sigmas (lcm={schedule_A.is_lcm()}), " + f"{name_b} has {schedule_B.total_sigmas()} sigmas (lcm={schedule_B.is_lcm()}).") class SigmaScheduleNode: @classmethod def INPUT_TYPES(s): return { "required": { "beta_schedule": (BetaSchedules.ALIAS_ACTIVE_LIST,), } } RETURN_TYPES = ("SIGMA_SCHEDULE",) CATEGORY = "Animate Diff 🎭🅐🅓/sample settings/sigma schedule" FUNCTION = "get_sigma_schedule" def get_sigma_schedule(self, beta_schedule: str): model_type = ModelSamplingType.from_alias(ModelSamplingType.EPS) new_model_sampling = BetaSchedules._to_model_sampling(alias=beta_schedule, model_type=model_type) return (SigmaSchedule(model_sampling=new_model_sampling, model_type=model_type),) class RawSigmaScheduleNode: @classmethod def INPUT_TYPES(s): return { "required": { "raw_beta_schedule": (BetaSchedules.RAW_BETA_SCHEDULE_LIST,), "linear_start": ("FLOAT", {"default": 0.00085, "min": 0.0, "max": 1.0, "step": 0.000001}), "linear_end": ("FLOAT", {"default": 0.012, "min": 0.0, "max": 1.0, "step": 0.000001}), #"cosine_s": ("FLOAT", {"default": 8e-3, "min": 0.0, "max": 1.0, "step": 0.000001}), "sampling": (ModelSamplingType._FULL_LIST,), "lcm_original_timesteps": ("INT", {"default": 50, "min": 1, "max": 1000}), "lcm_zsnr": ("BOOLEAN", {"default": False}), } } RETURN_TYPES = ("SIGMA_SCHEDULE",) CATEGORY = "Animate Diff 🎭🅐🅓/sample settings/sigma schedule" FUNCTION = "get_sigma_schedule" def get_sigma_schedule(self, raw_beta_schedule: str, linear_start: float, linear_end: float,# cosine_s: float, sampling: str, lcm_original_timesteps: int, lcm_zsnr: bool): new_config = ModelSamplingConfig(beta_schedule=raw_beta_schedule, linear_start=linear_start, linear_end=linear_end) if sampling != ModelSamplingType.LCM: lcm_original_timesteps=None lcm_zsnr=False model_type = ModelSamplingType.from_alias(sampling) new_model_sampling = BetaSchedules._to_model_sampling(alias=BetaSchedules.AUTOSELECT, model_type=model_type, config_override=new_config, original_timesteps=lcm_original_timesteps) if lcm_zsnr: SigmaSchedule.apply_zsnr(new_model_sampling=new_model_sampling) return (SigmaSchedule(model_sampling=new_model_sampling, model_type=model_type),) class WeightedAverageSigmaScheduleNode: @classmethod def INPUT_TYPES(s): return { "required": { "schedule_A": ("SIGMA_SCHEDULE",), "schedule_B": ("SIGMA_SCHEDULE",), "weight_A": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.001}), } } RETURN_TYPES = ("SIGMA_SCHEDULE",) CATEGORY = "Animate Diff 🎭🅐🅓/sample settings/sigma schedule" FUNCTION = "get_sigma_schedule" def get_sigma_schedule(self, schedule_A: SigmaSchedule, schedule_B: SigmaSchedule, weight_A: float): validate_sigma_schedule_compatibility(schedule_A, schedule_B) new_sigmas = schedule_A.model_sampling.sigmas * weight_A + schedule_B.model_sampling.sigmas * (1-weight_A) combo_schedule = schedule_A.clone() combo_schedule.model_sampling.set_sigmas(new_sigmas) return (combo_schedule,) class InterpolatedWeightedAverageSigmaScheduleNode: @classmethod def INPUT_TYPES(s): return { "required": { "schedule_A": ("SIGMA_SCHEDULE",), "schedule_B": ("SIGMA_SCHEDULE",), "weight_A_Start": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.001}), "weight_A_End": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.001}), "interpolation": (InterpolationMethod._LIST,), } } RETURN_TYPES = ("SIGMA_SCHEDULE",) CATEGORY = "Animate Diff 🎭🅐🅓/sample settings/sigma schedule" FUNCTION = "get_sigma_schedule" def get_sigma_schedule(self, schedule_A: SigmaSchedule, schedule_B: SigmaSchedule, weight_A_Start: float, weight_A_End: float, interpolation: str): validate_sigma_schedule_compatibility(schedule_A, schedule_B) # get reverse weights, since sigmas are currently reversed weights = InterpolationMethod.get_weights(num_from=weight_A_Start, num_to=weight_A_End, length=schedule_A.total_sigmas(), method=interpolation, reverse=True) weights = weights.to(schedule_A.model_sampling.sigmas.dtype).to(schedule_A.model_sampling.sigmas.device) new_sigmas = schedule_A.model_sampling.sigmas * weights + schedule_B.model_sampling.sigmas * (1.0-weights) combo_schedule = schedule_A.clone() combo_schedule.model_sampling.set_sigmas(new_sigmas) return (combo_schedule,) class SplitAndCombineSigmaScheduleNode: @classmethod def INPUT_TYPES(s): return { "required": { "schedule_Start": ("SIGMA_SCHEDULE",), "schedule_End": ("SIGMA_SCHEDULE",), "idx_split_percent": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.001}) } } RETURN_TYPES = ("SIGMA_SCHEDULE",) CATEGORY = "Animate Diff 🎭🅐🅓/sample settings/sigma schedule" FUNCTION = "get_sigma_schedule" def get_sigma_schedule(self, schedule_Start: SigmaSchedule, schedule_End: SigmaSchedule, idx_split_percent: float): validate_sigma_schedule_compatibility(schedule_Start, schedule_End) # first, calculate index to act as split; get diff from 1.0 since sigmas are flipped at this stage idx = int((1.0-idx_split_percent) * schedule_Start.total_sigmas()) new_sigmas = torch.cat([schedule_End.model_sampling.sigmas[:idx], schedule_Start.model_sampling.sigmas[idx:]], dim=0) new_schedule = schedule_Start.clone() new_schedule.model_sampling.set_sigmas(new_sigmas) return (new_schedule,)