__import__('pysqlite3') import sys sys.modules['sqlite3'] = sys.modules.pop('pysqlite3') import os print(os.getcwd()) print('dir here:') os.system('ls -d */') os.system('wget -q https://github.com/PanQiWei/AutoGPTQ/releases/download/v0.4.1/auto_gptq-0.4.1+cu118-cp310-cp310-linux_x86_64.whl') os.system('pip install -qqq auto_gptq-0.4.1+cu118-cp310-cp310-linux_x86_64.whl --progress-bar off') #os.system('apt-get install poppler-utils') import uuid #import replicate import requests import streamlit as st from streamlit.logger import get_logger import torch from auto_gptq import AutoGPTQForCausalLM from langchain import HuggingFacePipeline, PromptTemplate from langchain.chains import RetrievalQA from langchain.document_loaders import PyPDFDirectoryLoader from langchain.embeddings import HuggingFaceInstructEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma from pdf2image import convert_from_path from transformers import AutoTokenizer, TextStreamer, pipeline from langchain.memory import ConversationBufferMemory from gtts import gTTS from io import BytesIO from langchain.chains import ConversationalRetrievalChain import streamlit.components.v1 as components #from sentence_transformers import SentenceTransformer from langchain.document_loaders import UnstructuredMarkdownLoader from langchain.vectorstores.utils import filter_complex_metadata import fitz from PIL import Image user_session_id = uuid.uuid4() logger = get_logger(__name__) st.set_page_config(page_title="Document QA by Dono", page_icon="🤖", ) st.session_state.disabled = False st.title("Document QA by Dono") st.markdown(f""" """, unsafe_allow_html=True) DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu" loader = PyPDFDirectoryLoader("/home/user/app/pdfs/") docs = loader.load() print(len(docs)) @st.cache_resource def load_model(): #embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-large",model_kwargs={"device":DEVICE}) embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",model_kwargs={"device":DEVICE}) text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=256) texts = text_splitter.split_documents(docs) print('embedding done') #db = Chroma.from_documents(texts, embeddings, persist_directory="/home/user/app/db") db = Chroma.from_documents(texts, embeddings) print('db done') model_name_or_path = "TheBloke/Llama-2-13B-chat-GPTQ" model_basename = "model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) model = AutoGPTQForCausalLM.from_quantized( model_name_or_path, revision="gptq-4bit-128g-actorder_True", model_basename=model_basename, use_safetensors=True, trust_remote_code=True, inject_fused_attention=False, device=DEVICE, quantize_config=None, ) print('model done') DEFAULT_SYSTEM_PROMPT = """ You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. Always provide the citation for the answer from the text. Try to include any section or subsection present in the text responsible for the answer. Provide reference. Provide page number, section, sub section etc from which answer is taken. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. """.strip() def generate_prompt(prompt: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str: return f"""[INST] <>{system_prompt}<>{prompt} [/INST]""".strip() streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) text_pipeline = pipeline("text-generation",model=model,tokenizer=tokenizer,max_new_tokens=1024, temperature=0.2,top_p=0.95,repetition_penalty=1.15,streamer=streamer,) llm = HuggingFacePipeline(pipeline=text_pipeline, model_kwargs={"temperature": 0.2}) print('llm done') SYSTEM_PROMPT = "Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer." template = generate_prompt("""{context} Question: {question} """,system_prompt=SYSTEM_PROMPT,) #Enter memory here! prompt = PromptTemplate(template=template, input_variables=["context", "question"]) #Add history here qa_chain = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=db.as_retriever(search_kwargs={"k": 2}), return_source_documents=True, chain_type_kwargs={"prompt": prompt, "verbose": False, #"memory": ConversationBufferMemory( #memory_key="history", #input_key="question", #return_messages=True) },) print('load done') return qa_chain uploaded_file = len(docs) flag = 0 if uploaded_file is not None: flag = 1 model_name_or_path = "TheBloke/Llama-2-13B-chat-GPTQ" model_basename = "model" st.session_state["llm_model"] = model_name_or_path if "messages" not in st.session_state: st.session_state.messages = [] for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) def on_select(): st.session_state.disabled = True def get_message_history(): for message in st.session_state.messages: role, content = message["role"], message["content"] yield f"{role.title()}: {content}" qa_chain = load_model() if prompt := st.chat_input("How can I help you today?"): st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.markdown(prompt) with st.chat_message("assistant"): message_placeholder = st.empty() full_response = "" message_history = "\n".join(list(get_message_history())[-3:]) logger.info(f"{user_session_id} Message History: {message_history}") # question = st.text_input("Ask your question", placeholder="Try to include context in your question", # disabled=not uploaded_file,) result = qa_chain(prompt) sound_file = BytesIO() tts = gTTS(result['result'], lang='en') tts.write_to_fp(sound_file) output = [result['result']] for item in output: full_response += item message_placeholder.markdown(full_response + "▌") message_placeholder.markdown(full_response) #st.write(repr(result['source_documents'][0].metadata['page'])) #st.write(repr(result['source_documents'][0])) ### READ IN PDF page_number = int(result['source_documents'][0].metadata['page']) doc = fitz.open(str(result['source_documents'][0].metadata['source'])) text = str(result['source_documents'][0].page_content) if text != '': for page in doc: ### SEARCH text_instances = page.search_for(text) ### HIGHLIGHT for inst in text_instances: highlight = page.add_highlight_annot(inst) highlight.update() ### OUTPUT doc.save("/pdf2image/output.pdf", garbage=4, deflate=True, clean=True) # pdf_to_open = repr(result['source_documents'][0].metadata['source']) def pdf_page_to_image(pdf_file, page_number, output_image): # Open the PDF file pdf_document = fitz.open(pdf_file) # Get the specific page page = pdf_document[page_number] # Define the image DPI (dots per inch) dpi = 300 # You can adjust this as needed # Convert the page to an image pix = page.get_pixmap(matrix=fitz.Matrix(dpi / 100, dpi / 100)) # Save the image as a PNG file pix.save(output_image, "png") # Close the PDF file pdf_document.close() pdf_page_to_image('/home/user/app/pdf2image/output.pdf', page_number, '/home/user/app/pdf2image/output.png') image = Image.open('/home/user/app/pdf2image/output.png') st.image(image) st.audio(sound_file) # if 'clickedR' not in st.session_state: # st.session_state.clickedR = False # def click_buttonR(): # st.session_state.clickedR = True # if st.session_state.clickedR: # message_placeholder.markdown(full_response+repr(result['source_documents'][0])) # ref = st.button('References', on_click = click_buttonR) # if 'clickedA' not in st.session_state: # st.session_state.clickedA = False # def click_buttonA(): # st.session_state.clickedA = True # if st.session_state.clickedA: # sound_file = BytesIO() # tts = gTTS(result['result'], lang='en') # tts.write_to_fp(sound_file) # st.audio(sound_file) # ref = st.button(':speaker:', on_click = click_buttonA) #st.session_state.clickedR = False # #if ref: # message_placeholder.markdown(full_response+repr(result['source_documents'][0])) # #if sound: # sound_file = BytesIO() # tts = gTTS(result['result'], lang='en') # tts.write_to_fp(sound_file) # html_string = """ # # """ # message_placeholder.markdown(html_string, unsafe_allow_html=True) # will display a st.audio with the sound you specified in the "src" of the html_string and autoplay it # #time.sleep(5) # wait for 2 seconds to finish the playing of the audio response_sentiment = st.radio( "How was the Assistant's response?", ["😁", "😕", "😢"], key="response_sentiment", disabled=st.session_state.disabled, horizontal=True, index=1, help="This helps us improve the model.", # hide the radio button on click on_change=on_select(), ) logger.info(f"{user_session_id} | {full_response} | {response_sentiment}") # # Logging to FastAPI Endpoint # headers = {"Authorization": f"Bearer {secret_token}"} # log_data = {"log": f"{user_session_id} | {full_response} | {response_sentiment}"} # response = requests.post(fastapi_endpoint, json=log_data, headers=headers, timeout=10) # if response.status_code == 200: # logger.info("Query logged successfully") st.session_state.messages.append({"role": "assistant", "content": full_response})