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Outline

• Review form of bound 

• VC dimension definition 

• VC dimension of large-margin classifiers
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Vapnik-Chervonenkis Dimension
• Expressive power, or capacity, of a hypothesis class 

• Linear classifiers in d-dimensional space 

• Degree k polynomial classifiers 

• Hierarchical axis-parallel classifiers (decision trees) 

• Measured by ability of hypothesis class to shatter n points
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VC Dimension
• VC dimension of hypothesis class H: 

• Maximum number of examples that can be shattered by H 

• Examples can be arranged (feature values) in any way 

• Must be shattered in same arrangement 

• In general: linear classifier has VC dimension (d + 1)



VC Model Capacity Intuition
• How many points can this model class memorize? 

• Game view: 

• We choose placement of points 

• Adversary chooses labeling 

• Can we classify labeling? 

• Think of learning algorithm as function  
and hypothesis as a function 

• VC dimension |y| means A can output an h that can output any y

A : X ! H
h : X ! Y
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packing points into a sphere

VC(H) = R2 wTw

doesn’t depend on 
dimensionality!

radius = R
(we’re skipping lots of details)



Summary and Thoughts
• From analysis, SVM appears to minimize VC dimension 

• but bound assumes VC dimension is fixed 

• Generalization bounds tend to be loose for real data sizes 

• Formally describe trend, but are they useful? 

• Better (tighter) bounds are certainly useful 

• But loose bounds help us formally understand properties of 
learning algorithms


