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Outline

e Review form of bound
e \VVC dimension definition

* VC dimension of large-margin classifiers



(Generalization Error Bound

true risk

\ A VC(H) Iog VC(H) 1) — Iog 7

R(h) < R(h) + \
/ faHure probability
empirical risk
size of tralmng data

Vapnik-Chervonenkis dimension (model complexity)
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Vapnik-Chervonenkis Dimension

* EXpressive power, or capacity, of a hypothesis class
e Linear classifiers in d-dimensional space
 Degree k polynomial classifiers
 Hierarchical axis-parallel classifiers (decision trees)

 Measured by ability of hypothesis class to shatter n points
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VC Dimension

VC dimension of hypothesis class H:

Maximum number of examples that can be shattered by H
Examples can be arranged (feature values) in any way
Must be shattered in same arrangement

In general: linear classifier has VC dimension (d + 1)



VC Model Capacity Intuition

How many points can this model class memorize”
Game view:

* \We choose placement of points

* Adversary chooses labeling

 Can we classity labeling?

Think of learning algorithm as function A: X — H
and hypothesis as a function h: X — Y

VC dimension |y| means A can output an h that can output any y



Margin

radius = R



VC(H) = R2 wlw

doesn't depend on
dimensionality!

radius = R packing points into a sphere

(we're skipping lots of details)



Summary and Thoughts

 From analysis, SVM appears to minimize VC dimension

* put bound assumes VC dimension is fixed
* (Generalization bounds tend to be loose for real data sizes
 Formally describe trend, but are they usetul”?

o Better (tighter) bounds are certainly useful

o But loose bounds help us formally understand properties of
learning algorithms



