Model Complexity and VC Dimension

Machine Learning CSx824/ECEx242 Bert Huang Virginia Tech

- Review form of bound
- VC dimension definition
- VC dimension of large-margin classifiers

Outline

Generalization Error Bound

 $VC(H) \left(\log \frac{2n}{VC(H)}\right)$ $R(h) \leq \hat{R}(h) + 1$ n

if complexity is fixed

$$+1
ight) - \log rac{\delta}{4}$$

$$\approx \sqrt{\frac{\text{complexity}(H)}{n}}$$

if complexity is O(n)

Vapnik-Chervonenkis Dimension

- Expressive power, or capacity, of a hypothesis class
 - Linear classifiers in d-dimensional space
 - Degree k polynomial classifiers
 - Hierarchical axis-parallel classifiers (decision trees)
- Measured by ability of hypothesis class to shatter n points

Classify points into all possible labels

✓ ++, +-, -+, - -

Classify points into all possible labels

+++, ++-, +-+, +--, -++, - + -, - - -

Classify points into all possible labels

Classify points into all possible labels

Classify points into all possible labels

Classify points into all possible labels

+

4 points cannot be shattered by 2d linear classifier

VC Dimension

- VC dimension of hypothesis class H:
- Maximum number of examples that can be shattered by H
- Examples can be arranged (feature values) in any way
- Must be shattered in same arrangement
- In general: linear classifier has VC dimension (d + 1)

VC Model Capacity Intuition

- How many points can this model class memorize?
- Game view:
 - We choose placement of points
 - Adversary chooses labeling
 - Can we classify labeling?
- Think of learning algorithm as function $A: \mathcal{X} \to \mathcal{H}$ and hypothesis as a function $h: \mathcal{X} \to \mathcal{Y}$

VC dimension |y| means A can output an h that can output any y

Х

$VC(H) = R^2 W^T W$

doesn't depend on dimensionality!

radius = R

Margin

Х

Х

packing points into a sphere

(we're skipping lots of details)

Summary and Thoughts • From analysis, SVM appears to minimize VC dimension

- - but bound assumes VC dimension is fixed
- Generalization bounds tend to be loose for real data sizes
- Formally describe trend, but are they useful?
 - Better (tighter) bounds are certainly useful
 - But loose bounds help us formally understand properties of learning algorithms