Probability and Naive Bayes

Machine Learning CSx824/ECEx242

Bert Huang
Virginia Tech

Outline

- Probabilistic identities
- Independence and conditional independence
- Naive Bayes
- Log tricks

Probability Identities

- Random variables in caps (A)
- values in lowercase: $\mathbf{A}=\mathbf{a}$ or just a for shorthand
- $P(a \mid b)=P(a, b) / P(b)$ conditional probability
- $P(a, b)=P(a \mid b) P(b)$
joint probability
- $P(b \mid a)=P(a \mid b) P(b) / P(a)$

Probability via Counting

Probability via Counting

P(circle, red)

$$
=2 / 8=0.25
$$

Probability via Counting

$$
\begin{array}{ccc}
P(\text { circle } \mid \text { red }) & =P(\text { circle, red }) / P(\text { red }) \\
2 / 3 & 2 / 8 & 3 / 8
\end{array}
$$

Probability via Counting

$$
\begin{array}{ccc}
P(\text { circle } \mid \text { red }) & P(\text { red }) & =P(\text { circle }, \text { red }) \\
2 / 3 & 3 / 8 & 2 / 8
\end{array}
$$

Probability Identities

- Random variables in caps (A)
- values in lowercase: $\mathbf{A}=\mathbf{a}$ or just a for shorthand
- $P(a \mid b)=P(a, b) / P(b)$
- $P(a, b)=P(a \mid b) P(b)$
- $P(b \mid a)=P(a \mid b) P(b) / P(a)$

Bayes Rule

- $P(b \mid a)$
- $P(b \mid a)=P(a, b) / P(a)$
- $P(b \mid a)=P(a \mid b) P(b) / P(a)$

Classification

- $x \in\{0,1\}^{d}, y \in\{0,1\}$
- $f(x) \in\{0,1\}$
- Accuracy: $E[f(x)=y]$
- Bayes optimal classifier: $f(x)=\arg \max _{y} p(y \mid x)$
- Seems natural, but why is this optimal?

Back-of-Envelope for Bayes Optimal

- For each unique $\mathbf{x}, \mathbf{p}(\mathbf{y} \mathbf{l})$ is a coin flip
- Assume we need \mathbf{n} samples to accurately estimate a coin flip
- How many unique x's?
- $\left|\{0,1\}^{\mathrm{d}}\right|=2^{\mathrm{d}}$
- Need n2 ${ }^{\text {d }}$ samples

$$
\begin{aligned}
& n=100 \\
& d=100
\end{aligned}
$$

Need 1.2676506×10^{32} samples
$1.2676506 \times 10,000,000,000,000,000,000,000,000,000,000$

How Many Samples?

- Concentration bounds

Independence

- \mathbf{A} and \mathbf{B} are independent iff $\mathbf{p}(\mathbf{A}, \mathbf{B})=\mathbf{p}(\mathbf{A}) \mathbf{p}(\mathbf{B})$
- \mathbf{A} and \mathbf{B} are conditionally independent given \mathbf{C} iff $p(A, B \mid C)=p(A \mid C) p(B \mid C)$
- $|\mathbf{p}(\mathbf{A}, \mathbf{B})|=|\mathbf{A}| \times|B| \quad|\mathbf{p}(\mathbf{A})|=|\mathbf{A}| \quad|\mathbf{p}(\mathbf{B})|=|\mathbf{B}|$

Naive Bayes

- Assume dimensions of \mathbf{x} are conditionally independent given \mathbf{y}
- Bag of words: $p($ "virginia", "tech" $\mid y)=p(" v i r g i n i a " \mid y) p(" t e c h " \mid y)$
- $f(x)=\arg \max _{\mathrm{y}} \mathrm{p}(\mathrm{y} \mid \mathrm{x})$
- $\quad=\arg \max _{\mathrm{y}} \mathrm{p}(\mathrm{x} \mid \mathrm{y}) \mathrm{p}(\mathrm{y}) / \mathrm{p}(\mathrm{x})$
- $\quad=\arg \max _{\mathrm{y}} \mathrm{p}(\mathrm{x} \mid \mathrm{y}) \mathrm{p}(\mathrm{y})$
- $\quad=\arg \max _{y} p(y) \prod_{j} p\left(x_{j} \mid y\right)$

Bernoulli Maximum Likelihood

- $p(y) \prod_{j} p\left(x_{j} \mid y\right)$
- $p(Y=y) \leftarrow(\#$ examples where $Y=y) /(\#$ examples)
- $p\left(X_{j}=x_{j} \mid y\right) \leftarrow\left(\#\right.$ ex. where $Y=y$ and $\left.X_{j}=x_{j}\right) /(\#$ ex. where $Y=y)$
- Learning by counting!

Breaking Maximum Likelihood

- Happy: "Great!" Happy: "Had a great day" Sad: ":-(Bad day" Sad: ":-("
- ???: "Had a bad day :-("
- $p(y)=0.5$

	great	had	a	bad	day	$:-($
Happy	1.0	0.5	0.5	0.0	0.5	0
Sad	0.0	0.0	0.0	0.5	0.5	1.0

- $\mathrm{p}($ happy $\mid \ldots) \propto 0.5 \times 0.0 \ldots$
$p(s a d \mid \ldots) \quad \propto 0.5 \times 1.0 \times 0.0 \times \ldots$

Breaking Maximum Likelihood

- Happy: "Great!" Happy: "Had a great day" Sad: ":-(Bad day" Sad: ":-("
- ???: "Had a bad day :-("
- $p(y)=0.5$

	great	had	a	bad	day	$:-($
Happy	1.0	0.5	0.5	0.0	0.5	0
Sad	0.0	0.0	0.0	0.5	0.5	1.0

- $\mathrm{p}($ happy $\mid \ldots) \propto 0.5 \times 0.0 \ldots$
$p(s a d \mid \ldots) \quad \propto 0.5 \times 1.0 \times 0.0 \times \ldots$

Fixing Maximum Likelihood

- $p(Z=z) \leftarrow(\#$ examples where $Y=y+a) /(\#$ examples $+2 \mathbf{a})$
- E.g., $a=1$
- a vanishes as \# of examples grows toward infinity
- When \# is small, a prevents 1.0 or 0.0 estimates

Breaking Maximum Likelihood

- Happy: "Great!" Happy: "Had a great day"

$$
\frac{2+1}{2+2(1)}=3 / 4
$$

great had
a bad
day :-

Sad: ":-(Bad day
Sad: ":-("

	great	had	a	bad	day	$:-($
Happy	0.75	0.5	0.5	0.25	0.5	0.25
Sad	0.25	0.25	0.25	0.5	0.5	0.75

- $p($ happy $\mid \ldots) \propto 0.5 \times 0.25 \times 0.5 \times 0.5 \times 0.25 \times 0.5 \times 0.75=0.0029$
$p(s a d \mid \ldots) \propto 0.5 \times 0.75 \times 0.25 \times 0.25 \times 0.5 \times 0.5 \times 0.75=0.0044$

Maximum a Posteriori

- Bernoulli: $p(Z \mid \theta)=\theta^{z}(1-\theta)^{(1-z)}$
- Maximum likelihood: $\theta \leftarrow \arg \max _{\theta^{\prime}} p\left(Z \mid \theta^{\prime}\right)$
- Maximum a posteriori $=$ maximize posterior: $\theta \leftarrow \arg \max _{\theta^{\prime}} \mathrm{p}\left(\theta^{\prime} \mid \mathrm{Z}\right)$
- $p\left(\theta^{\prime} \mid Z\right)=p\left(Z \mid \theta^{\prime}\right) p\left(\theta^{\prime}\right) / p(Z)$
- MAP: $\theta \leftarrow \arg$ max $_{\theta^{\prime}} p\left(Z \mid \theta^{\prime}\right) p\left(\theta^{\prime}\right)$
- Previous trick equiv. to setting $p\left(\theta^{\prime}\right)$ to a Beta distribution

Continuous Data

- Conditional feature independence with continuous data?
- E.g., use normal distribution for $p\left(x_{j} \mid y\right)$
- $p(y)$ is the same as before
- $p\left(x_{j} \mid y\right)$ is the MLE for univariate normal

Log Tricks

- Each $p\left(x_{j} \mid y\right)$ is in $[0,1]$
- Multiplying d of them quickly goes to numerical zero
- E.g., $0.9^{256}=1.932334983 \mathrm{E}-12$
- Instead, use \log probabilities: $\log \prod_{j} p\left(x_{j} \mid y\right)=\sum_{j} \log p\left(x_{j} \mid y\right)$
- E.g., $\log 0.9^{256}=256 \log 0.9=-11.71$

Summary

- Probabilistic identities
- Independence and conditional independence
- Naive Bayes
- Log tricks

