# -*- coding: utf-8 -*- # Copyright 2020 TensorFlow Authors, All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Optional, Tuple, Union import tensorflow as tf from tensorflow.python.ops import control_flow_util from tensorflow_addons.seq2seq import Decoder from tensorflow_addons.seq2seq.decoder import ( BaseDecoder, _prepend_batch, _transpose_batch_time, ) from tensorflow_addons.utils.types import Number, TensorLike def dynamic_decode( decoder: Union[Decoder, BaseDecoder], output_time_major: bool = False, impute_finished: bool = False, maximum_iterations: Optional[TensorLike] = None, parallel_iterations: int = 32, swap_memory: bool = False, training: Optional[bool] = None, scope: Optional[str] = None, enable_tflite_convertible: bool = False, **kwargs ) -> Tuple[Any, Any, Any]: """Perform dynamic decoding with `decoder`. Calls initialize() once and step() repeatedly on the Decoder object. Args: decoder: A `Decoder` instance. output_time_major: Python boolean. Default: `False` (batch major). If `True`, outputs are returned as time major tensors (this mode is faster). Otherwise, outputs are returned as batch major tensors (this adds extra time to the computation). impute_finished: Python boolean. If `True`, then states for batch entries which are marked as finished get copied through and the corresponding outputs get zeroed out. This causes some slowdown at each time step, but ensures that the final state and outputs have the correct values and that backprop ignores time steps that were marked as finished. maximum_iterations: A strictly positive `int32` scalar, the maximum allowed number of decoding steps. Default is `None` (decode until the decoder is fully done). parallel_iterations: Argument passed to `tf.while_loop`. swap_memory: Argument passed to `tf.while_loop`. training: Python boolean. Indicates whether the layer should behave in training mode or in inference mode. Only relevant when `dropout` or `recurrent_dropout` is used. scope: Optional name scope to use. enable_tflite_convertible: Python boolean. If `True`, then the variables of `TensorArray` become of 1-D static shape. Also zero pads in the output tensor will be discarded. Default: `False`. **kwargs: dict, other keyword arguments for dynamic_decode. It might contain arguments for `BaseDecoder` to initialize, which takes all tensor inputs during call(). Returns: `(final_outputs, final_state, final_sequence_lengths)`. Raises: ValueError: if `maximum_iterations` is provided but is not a scalar. """ with tf.name_scope(scope or "decoder"): is_xla = not tf.executing_eagerly() and control_flow_util.GraphOrParentsInXlaContext( tf.compat.v1.get_default_graph() ) if maximum_iterations is not None: maximum_iterations = tf.convert_to_tensor( maximum_iterations, dtype=tf.int32, name="maximum_iterations" ) if maximum_iterations.shape.ndims != 0: raise ValueError("maximum_iterations must be a scalar") tf.debugging.assert_greater( maximum_iterations, 0, message="maximum_iterations should be greater than 0", ) elif is_xla: raise ValueError("maximum_iterations is required for XLA compilation.") if isinstance(decoder, Decoder): initial_finished, initial_inputs, initial_state = decoder.initialize() else: # For BaseDecoder that takes tensor inputs during call. decoder_init_input = kwargs.pop("decoder_init_input", None) decoder_init_kwargs = kwargs.pop("decoder_init_kwargs", {}) initial_finished, initial_inputs, initial_state = decoder.initialize( decoder_init_input, **decoder_init_kwargs ) if enable_tflite_convertible: # Assume the batch_size = 1 for inference. # So we can change 2-D TensorArray into 1-D by reshaping it. zero_outputs = tf.nest.map_structure( lambda shape, dtype: tf.reshape( tf.zeros(_prepend_batch(decoder.batch_size, shape), dtype=dtype), [-1], ), decoder.output_size, decoder.output_dtype, ) else: zero_outputs = tf.nest.map_structure( lambda shape, dtype: tf.zeros( _prepend_batch(decoder.batch_size, shape), dtype=dtype ), decoder.output_size, decoder.output_dtype, ) if maximum_iterations is not None: initial_finished = tf.logical_or(initial_finished, 0 >= maximum_iterations) initial_sequence_lengths = tf.zeros_like(initial_finished, dtype=tf.int32) initial_time = tf.constant(0, dtype=tf.int32) def _shape(batch_size, from_shape): if not isinstance(from_shape, tf.TensorShape) or from_shape.ndims == 0: return None else: batch_size = tf.get_static_value( tf.convert_to_tensor(batch_size, name="batch_size") ) if enable_tflite_convertible: # Since we can't use 2-D TensoArray and assume `batch_size` = 1, # we use `from_shape` dimension only. return from_shape return tf.TensorShape([batch_size]).concatenate(from_shape) dynamic_size = maximum_iterations is None or not is_xla # The dynamic shape `TensoArray` is not allowed in TFLite yet. dynamic_size = dynamic_size and (not enable_tflite_convertible) def _create_ta(s, d): return tf.TensorArray( dtype=d, size=0 if dynamic_size else maximum_iterations, dynamic_size=dynamic_size, element_shape=_shape(decoder.batch_size, s), ) initial_outputs_ta = tf.nest.map_structure( _create_ta, decoder.output_size, decoder.output_dtype ) def condition( unused_time, unused_outputs_ta, unused_state, unused_inputs, finished, unused_sequence_lengths, ): return tf.logical_not(tf.reduce_all(finished)) def body(time, outputs_ta, state, inputs, finished, sequence_lengths): """Internal while_loop body. Args: time: scalar int32 tensor. outputs_ta: structure of TensorArray. state: (structure of) state tensors and TensorArrays. inputs: (structure of) input tensors. finished: bool tensor (keeping track of what's finished). sequence_lengths: int32 tensor (keeping track of time of finish). Returns: `(time + 1, outputs_ta, next_state, next_inputs, next_finished, next_sequence_lengths)`. ``` """ (next_outputs, decoder_state, next_inputs, decoder_finished) = decoder.step( time, inputs, state, training ) decoder_state_sequence_lengths = False if decoder.tracks_own_finished: next_finished = decoder_finished lengths = getattr(decoder_state, "lengths", None) if lengths is not None: # sequence lengths are provided by decoder_state.lengths; # overwrite our sequence lengths. decoder_state_sequence_lengths = True sequence_lengths = tf.cast(lengths, tf.int32) else: next_finished = tf.logical_or(decoder_finished, finished) if decoder_state_sequence_lengths: # Just pass something through the loop; at the next iteration # we'll pull the sequence lengths from the decoder_state again. next_sequence_lengths = sequence_lengths else: next_sequence_lengths = tf.where( tf.logical_not(finished), tf.fill(tf.shape(sequence_lengths), time + 1), sequence_lengths, ) tf.nest.assert_same_structure(state, decoder_state) tf.nest.assert_same_structure(outputs_ta, next_outputs) tf.nest.assert_same_structure(inputs, next_inputs) # Zero out output values past finish if impute_finished: def zero_out_finished(out, zero): if finished.shape.rank < zero.shape.rank: broadcast_finished = tf.broadcast_to( tf.expand_dims(finished, axis=-1), zero.shape ) return tf.where(broadcast_finished, zero, out) else: return tf.where(finished, zero, out) emit = tf.nest.map_structure( zero_out_finished, next_outputs, zero_outputs ) else: emit = next_outputs # Copy through states past finish def _maybe_copy_state(new, cur): # TensorArrays and scalar states get passed through. if isinstance(cur, tf.TensorArray): pass_through = True else: new.set_shape(cur.shape) pass_through = new.shape.ndims == 0 if not pass_through: broadcast_finished = tf.broadcast_to( tf.expand_dims(finished, axis=-1), new.shape ) return tf.where(broadcast_finished, cur, new) else: return new if impute_finished: next_state = tf.nest.map_structure( _maybe_copy_state, decoder_state, state ) else: next_state = decoder_state if enable_tflite_convertible: # Reshape to 1-D. emit = tf.nest.map_structure(lambda x: tf.reshape(x, [-1]), emit) outputs_ta = tf.nest.map_structure( lambda ta, out: ta.write(time, out), outputs_ta, emit ) return ( time + 1, outputs_ta, next_state, next_inputs, next_finished, next_sequence_lengths, ) res = tf.while_loop( condition, body, loop_vars=( initial_time, initial_outputs_ta, initial_state, initial_inputs, initial_finished, initial_sequence_lengths, ), parallel_iterations=parallel_iterations, maximum_iterations=maximum_iterations, swap_memory=swap_memory, ) final_outputs_ta = res[1] final_state = res[2] final_sequence_lengths = res[5] final_outputs = tf.nest.map_structure(lambda ta: ta.stack(), final_outputs_ta) try: final_outputs, final_state = decoder.finalize( final_outputs, final_state, final_sequence_lengths ) except NotImplementedError: pass if not output_time_major: if enable_tflite_convertible: # Reshape the output to the original shape. def _restore_batch(x): return tf.expand_dims(x, [1]) final_outputs = tf.nest.map_structure(_restore_batch, final_outputs) final_outputs = tf.nest.map_structure(_transpose_batch_time, final_outputs) return final_outputs, final_state, final_sequence_lengths