import gradio as gr import numpy as np from tensorflow.keras.preprocessing.image import load_img, img_to_array from tensorflow.keras.models import load_model from PIL import Image import matplotlib.pyplot as plt i1 = gr.inputs.Image(shape=(256, 256)) #i2 = gr.inputs.Slider(minimum=2, maximum=4, step=0.1, default=None, label="Scale for intensity - the more value the less the intensity in the pixels") o1 = gr.outputs.Image() o2 = gr.outputs.Image() gen_model = load_model('256_model_250ep.h5') def colorify(pixels): pixels = (pixels - 127.5) / 127.5 pixels = np.expand_dims(pixels, 0) gen_image = gen_model.predict(pixels) gen_image = (gen_image + 1) / 2 return Image.fromarray((gen_image[0] * 255.0).astype(np.uint8)) title = "Colorify" description = "Recolor your images using this lite version of PIX2PIX GAN , model is trained on 700 randomly collected images from the internet with 256*256 pixels. Due to the above constraint please note that the resolution of your images will decrease" examples=[['example1.png'],['example2.jpg']] article = "
" gr.Interface(fn=colorify, inputs=i1, outputs=o1, title=title, description=description, article=article, examples=examples, enable_queue=True).launch()