File size: 6,054 Bytes
61f3fd1
b35aeed
61f3fd1
b35aeed
61f3fd1
b35aeed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61f3fd1
b35aeed
 
 
 
 
 
 
 
 
 
 
 
61f3fd1
b35aeed
 
61f3fd1
b35aeed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61f3fd1
b35aeed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61f3fd1
 
b35aeed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61f3fd1
b35aeed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import os
import base64
from groq import Groq
import gradio as gr

# -- Groq Client Setup for Text Chats
def get_response(message, history):
    client = Groq(api_key=os.environ.get("GROQ_API_KEY"))

    # System prompt
    messages = [
        {
            "role": "system",
            "content": (
                "You are a UX Ops assistant. Help the design team improve processes. You can:\n"
                "- Collect feedback by topic\n"
                "- Summarize research transcripts\n"
                "- Assist with dev handoff checklists\n"
                "- Ask follow-up questions when needed"
            )
        }
    ]

    # Clean Gradio history
    clean_history = [
        {"role": turn["role"], "content": turn["content"]}
        for turn in history
        if isinstance(turn, dict) and "role" in turn and "content" in turn
    ]
    messages.extend(clean_history)

    # Append new user message
    messages.append({"role": "user", "content": message})

    # Call the API
    chat_completion = client.chat.completions.create(
        messages=messages,
        model="meta-llama/llama-4-scout-17b-16e-instruct"
    )
    return chat_completion.choices[0].message.content

# -- Other Handlers
def summarize_file(file):
    with open(file.name, "r") as f:
        content = f.read()
    return get_response(f"Summarize this user interview:\n{content}", [])

def validate_handoff(checked_items):
    msg = "Here’s the developer handoff readiness:\n"
    status = []
    status.append("✅ Components used from design system" if "components" in checked_items else "⚠️ Components not confirmed")
    status.append("✅ Developer notes added" if "notes" in checked_items else "⚠️ Notes missing")
    status.append("✅ Dev links and specs included" if "links" in checked_items else "⚠️ Links to specs missing")
    return "\n".join([msg] + status)

def structure_feedback(layout, copy, interaction):
    return get_response(
        f"Collect feedback:\n- Layout: {layout}\n- Copy: {copy}\n- Interaction: {interaction}",
        []
    )

# -- Design Image Feedback with Multimodal Support
def provide_design_feedback(image_path):
    # Encode image to Data URL
    with open(image_path, "rb") as img_f:
        encoded = base64.b64encode(img_f.read()).decode("utf-8")
    ext = os.path.splitext(image_path)[1].lstrip(".").lower()
    data_url = f"data:image/{ext};base64,{encoded}"

    # Multimodal user message
    user_content = [
        {"type": "text", "text": (
            "Audit the UX of this design—provide feedback on hierarchy, color, typography, "
            "accessibility, and usability."
        )},
        {"type": "image_url", "image_url": {"url": data_url}}
    ]

    # Build messages
    client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
    messages = [
        {"role": "system", "content": "You are a UX Ops assistant. Give actionable, concise design feedback."},
        {"role": "user", "content": user_content}
    ]

    # Call Groq multimodal completion
    chat_completion = client.chat.completions.create(
        model="meta-llama/llama-4-maverick-17b-128e-instruct",
        messages=messages,
        temperature=1.0,
        max_completion_tokens=1024,
        top_p=1.0
    )
    return chat_completion.choices[0].message.content

# -- Main App UI
with gr.Blocks(title="UX Ops Assistant") as demo:
    gr.Markdown("## 🎯 UX Design Operations Dashboard", elem_classes="centered")

    # Chat Tab
    with gr.Tab("🧠 Ask Assistant"):
        chatbot = gr.Chatbot(type="messages", height=400)
        user_input = gr.Textbox(placeholder="Ask about UX process, feedback, etc.")

        def submit_chat(msg, history):
            reply = get_response(msg, history)
            new_history = history + [
                {"role": "user", "content": msg},
                {"role": "assistant", "content": reply}
            ]
            return "", new_history

        user_input.submit(
            fn=submit_chat,
            inputs=[user_input, chatbot],
            outputs=[user_input, chatbot]
        )

    # Research Upload Tab
    with gr.Tab("📂 Upload Research"):
        file_input = gr.File(label="Upload transcript (.txt)")
        summary_output = gr.Textbox(label="Summary", lines=6)
        file_input.change(fn=summarize_file, inputs=file_input, outputs=summary_output)

    # Dev Handoff Checklist Tab
    with gr.Tab("✅ Dev Handoff Checklist"):
        checklist = gr.CheckboxGroup(
            choices=["components", "notes", "links"],
            label="What's included in this design?"
        )
        validate_btn = gr.Button("Validate Handoff Readiness")
        result = gr.Textbox(label="Result", lines=4)
        validate_btn.click(fn=validate_handoff, inputs=checklist, outputs=result)

    # Feedback Organization Tab
    with gr.Tab("✏️ Collect Design Feedback"):
        layout_fb = gr.Textbox(label="Layout")
        copy_fb = gr.Textbox(label="Copy/Wording")
        interaction_fb = gr.Textbox(label="Interactions")
        fb_btn = gr.Button("Organize Feedback")
        fb_output = gr.Textbox(label="Organized Feedback", lines=6)
        fb_btn.click(
            fn=structure_feedback,
            inputs=[layout_fb, copy_fb, interaction_fb],
            outputs=fb_output
        )

    # Design Image Feedback Tab
    with gr.Tab("🖼️ Upload Design Feedback"):
        design_image = gr.Image(type="filepath", label="Upload Design (JPG, PNG)")
        image_preview = gr.Image(interactive=False, label="Preview")
        feedback_btn2 = gr.Button("Get Design Feedback")
        design_feedback_output = gr.Textbox(label="Design Feedback", lines=10)

        def display_and_feedback(image_path):
            preview = image_path
            feedback = provide_design_feedback(image_path)
            return preview, feedback

        feedback_btn2.click(
            fn=display_and_feedback,
            inputs=design_image,
            outputs=[image_preview, design_feedback_output]
        )

    demo.launch()