"""This module implements an abstract base class (ABC) 'BaseDataset' for datasets. It also includes common transformation functions (e.g., get_transform, __scale_width), which can be later used in subclasses. """ import random import numpy as np import torch.utils.data as data from PIL import Image import torchvision.transforms as transforms from abc import ABC, abstractmethod class BaseDataset(data.Dataset, ABC): """This class is an abstract base class (ABC) for datasets. To create a subclass, you need to implement the following four functions: -- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt). -- <__len__>: return the size of dataset. -- <__getitem__>: get a data point. -- : (optionally) add dataset-specific options and set default options. """ def __init__(self, opt): """Initialize the class; save the options in the class Parameters: opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions """ self.opt = opt # self.root = opt.dataroot self.current_epoch = 0 @staticmethod def modify_commandline_options(parser, is_train): """Add new dataset-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. """ return parser @abstractmethod def __len__(self): """Return the total number of images in the dataset.""" return 0 @abstractmethod def __getitem__(self, index): """Return a data point and its metadata information. Parameters: index - - a random integer for data indexing Returns: a dictionary of data with their names. It ususally contains the data itself and its metadata information. """ pass def get_transform(grayscale=False): transform_list = [] if grayscale: transform_list.append(transforms.Grayscale(1)) transform_list += [transforms.ToTensor()] return transforms.Compose(transform_list) def get_affine_mat(opt, size): shift_x, shift_y, scale, rot_angle, flip = 0., 0., 1., 0., False w, h = size if 'shift' in opt.preprocess: shift_pixs = int(opt.shift_pixs) shift_x = random.randint(-shift_pixs, shift_pixs) shift_y = random.randint(-shift_pixs, shift_pixs) if 'scale' in opt.preprocess: scale = 1 + opt.scale_delta * (2 * random.random() - 1) if 'rot' in opt.preprocess: rot_angle = opt.rot_angle * (2 * random.random() - 1) rot_rad = -rot_angle * np.pi/180 if 'flip' in opt.preprocess: flip = random.random() > 0.5 shift_to_origin = np.array([1, 0, -w//2, 0, 1, -h//2, 0, 0, 1]).reshape([3, 3]) flip_mat = np.array([-1 if flip else 1, 0, 0, 0, 1, 0, 0, 0, 1]).reshape([3, 3]) shift_mat = np.array([1, 0, shift_x, 0, 1, shift_y, 0, 0, 1]).reshape([3, 3]) rot_mat = np.array([np.cos(rot_rad), np.sin(rot_rad), 0, -np.sin(rot_rad), np.cos(rot_rad), 0, 0, 0, 1]).reshape([3, 3]) scale_mat = np.array([scale, 0, 0, 0, scale, 0, 0, 0, 1]).reshape([3, 3]) shift_to_center = np.array([1, 0, w//2, 0, 1, h//2, 0, 0, 1]).reshape([3, 3]) affine = shift_to_center @ scale_mat @ rot_mat @ shift_mat @ flip_mat @ shift_to_origin affine_inv = np.linalg.inv(affine) return affine, affine_inv, flip def apply_img_affine(img, affine_inv, method=Image.BICUBIC): return img.transform(img.size, Image.AFFINE, data=affine_inv.flatten()[:6], resample=Image.BICUBIC) def apply_lm_affine(landmark, affine, flip, size): _, h = size lm = landmark.copy() lm[:, 1] = h - 1 - lm[:, 1] lm = np.concatenate((lm, np.ones([lm.shape[0], 1])), -1) lm = lm @ np.transpose(affine) lm[:, :2] = lm[:, :2] / lm[:, 2:] lm = lm[:, :2] lm[:, 1] = h - 1 - lm[:, 1] if flip: lm_ = lm.copy() lm_[:17] = lm[16::-1] lm_[17:22] = lm[26:21:-1] lm_[22:27] = lm[21:16:-1] lm_[31:36] = lm[35:30:-1] lm_[36:40] = lm[45:41:-1] lm_[40:42] = lm[47:45:-1] lm_[42:46] = lm[39:35:-1] lm_[46:48] = lm[41:39:-1] lm_[48:55] = lm[54:47:-1] lm_[55:60] = lm[59:54:-1] lm_[60:65] = lm[64:59:-1] lm_[65:68] = lm[67:64:-1] lm = lm_ return lm