import torch.nn as nn import torch class ResidualConv(nn.Module): def __init__(self, input_dim, output_dim, stride, padding): super(ResidualConv, self).__init__() self.conv_block = nn.Sequential( nn.BatchNorm2d(input_dim), nn.ReLU(), nn.Conv2d( input_dim, output_dim, kernel_size=3, stride=stride, padding=padding ), nn.BatchNorm2d(output_dim), nn.ReLU(), nn.Conv2d(output_dim, output_dim, kernel_size=3, padding=1), ) self.conv_skip = nn.Sequential( nn.Conv2d(input_dim, output_dim, kernel_size=3, stride=stride, padding=1), nn.BatchNorm2d(output_dim), ) def forward(self, x): return self.conv_block(x) + self.conv_skip(x) class Upsample(nn.Module): def __init__(self, input_dim, output_dim, kernel, stride): super(Upsample, self).__init__() self.upsample = nn.ConvTranspose2d( input_dim, output_dim, kernel_size=kernel, stride=stride ) def forward(self, x): return self.upsample(x) class Squeeze_Excite_Block(nn.Module): def __init__(self, channel, reduction=16): super(Squeeze_Excite_Block, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // reduction, bias=False), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel, bias=False), nn.Sigmoid(), ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y.expand_as(x) class ASPP(nn.Module): def __init__(self, in_dims, out_dims, rate=[6, 12, 18]): super(ASPP, self).__init__() self.aspp_block1 = nn.Sequential( nn.Conv2d( in_dims, out_dims, 3, stride=1, padding=rate[0], dilation=rate[0] ), nn.ReLU(inplace=True), nn.BatchNorm2d(out_dims), ) self.aspp_block2 = nn.Sequential( nn.Conv2d( in_dims, out_dims, 3, stride=1, padding=rate[1], dilation=rate[1] ), nn.ReLU(inplace=True), nn.BatchNorm2d(out_dims), ) self.aspp_block3 = nn.Sequential( nn.Conv2d( in_dims, out_dims, 3, stride=1, padding=rate[2], dilation=rate[2] ), nn.ReLU(inplace=True), nn.BatchNorm2d(out_dims), ) self.output = nn.Conv2d(len(rate) * out_dims, out_dims, 1) self._init_weights() def forward(self, x): x1 = self.aspp_block1(x) x2 = self.aspp_block2(x) x3 = self.aspp_block3(x) out = torch.cat([x1, x2, x3], dim=1) return self.output(out) def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() class Upsample_(nn.Module): def __init__(self, scale=2): super(Upsample_, self).__init__() self.upsample = nn.Upsample(mode="bilinear", scale_factor=scale) def forward(self, x): return self.upsample(x) class AttentionBlock(nn.Module): def __init__(self, input_encoder, input_decoder, output_dim): super(AttentionBlock, self).__init__() self.conv_encoder = nn.Sequential( nn.BatchNorm2d(input_encoder), nn.ReLU(), nn.Conv2d(input_encoder, output_dim, 3, padding=1), nn.MaxPool2d(2, 2), ) self.conv_decoder = nn.Sequential( nn.BatchNorm2d(input_decoder), nn.ReLU(), nn.Conv2d(input_decoder, output_dim, 3, padding=1), ) self.conv_attn = nn.Sequential( nn.BatchNorm2d(output_dim), nn.ReLU(), nn.Conv2d(output_dim, 1, 1), ) def forward(self, x1, x2): out = self.conv_encoder(x1) + self.conv_decoder(x2) out = self.conv_attn(out) return out * x2