import numpy as np import cv2, os, sys, torch from tqdm import tqdm from PIL import Image # 3dmm extraction from src.face3d.util.preprocess import align_img from src.face3d.util.load_mats import load_lm3d from src.face3d.models import networks from src.face3d.extract_kp_videos import KeypointExtractor from scipy.io import loadmat, savemat from src.utils.croper import Croper import warnings warnings.filterwarnings("ignore") def split_coeff(coeffs): """ Return: coeffs_dict -- a dict of torch.tensors Parameters: coeffs -- torch.tensor, size (B, 256) """ id_coeffs = coeffs[:, :80] exp_coeffs = coeffs[:, 80: 144] tex_coeffs = coeffs[:, 144: 224] angles = coeffs[:, 224: 227] gammas = coeffs[:, 227: 254] translations = coeffs[:, 254:] return { 'id': id_coeffs, 'exp': exp_coeffs, 'tex': tex_coeffs, 'angle': angles, 'gamma': gammas, 'trans': translations } class CropAndExtract(): def __init__(self, path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, device): self.croper = Croper(path_of_lm_croper) self.kp_extractor = KeypointExtractor(device) self.net_recon = networks.define_net_recon(net_recon='resnet50', use_last_fc=False, init_path='').to(device) checkpoint = torch.load(path_of_net_recon_model, map_location=torch.device(device)) self.net_recon.load_state_dict(checkpoint['net_recon']) self.net_recon.eval() self.lm3d_std = load_lm3d(dir_of_BFM_fitting) self.device = device def generate(self, input_path, save_dir, crop_or_resize='crop'): pic_size = 256 pic_name = os.path.splitext(os.path.split(input_path)[-1])[0] landmarks_path = os.path.join(save_dir, pic_name+'_landmarks.txt') coeff_path = os.path.join(save_dir, pic_name+'.mat') png_path = os.path.join(save_dir, pic_name+'.png') #load input if not os.path.isfile(input_path): raise ValueError('input_path must be a valid path to video/image file') elif input_path.split('.')[1] in ['jpg', 'png', 'jpeg']: # loader for first frame full_frames = [cv2.imread(input_path)] fps = 25 else: # loader for videos video_stream = cv2.VideoCapture(input_path) fps = video_stream.get(cv2.CAP_PROP_FPS) full_frames = [] while 1: still_reading, frame = video_stream.read() if not still_reading: video_stream.release() break full_frames.append(frame) break x_full_frames = [cv2.cvtColor(full_frames[0], cv2.COLOR_BGR2RGB) ] if crop_or_resize.lower() == 'crop': # default crop x_full_frames, crop, quad = self.croper.crop(x_full_frames, xsize=pic_size) clx, cly, crx, cry = crop lx, ly, rx, ry = quad lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry) oy1, oy2, ox1, ox2 = cly+ly, cly+ry, clx+lx, clx+rx original_size = (ox2 - ox1, oy2 - oy1) else: oy1, oy2, ox1, ox2 = 0, x_full_frames[0].shape[0], 0, x_full_frames[0].shape[1] original_size = (ox2 - ox1, oy2 - oy1) frames_pil = [Image.fromarray(cv2.resize(frame,(pic_size, pic_size))) for frame in x_full_frames] if len(frames_pil) == 0: print('No face is detected in the input file') return None, None # save crop info for frame in frames_pil: cv2.imwrite(png_path, cv2.cvtColor(np.array(frame), cv2.COLOR_RGB2BGR)) # 2. get the landmark according to the detected face. if not os.path.isfile(landmarks_path): lm = self.kp_extractor.extract_keypoint(frames_pil, landmarks_path) else: print(' Using saved landmarks.') lm = np.loadtxt(landmarks_path).astype(np.float32) lm = lm.reshape([len(x_full_frames), -1, 2]) if not os.path.isfile(coeff_path): # load 3dmm paramter generator from Deep3DFaceRecon_pytorch video_coeffs, full_coeffs = [], [] for idx in tqdm(range(len(frames_pil)), desc='3DMM Extraction In Video:'): frame = frames_pil[idx] W,H = frame.size lm1 = lm[idx].reshape([-1, 2]) if np.mean(lm1) == -1: lm1 = (self.lm3d_std[:, :2]+1)/2. lm1 = np.concatenate( [lm1[:, :1]*W, lm1[:, 1:2]*H], 1 ) else: lm1[:, -1] = H - 1 - lm1[:, -1] trans_params, im1, lm1, _ = align_img(frame, lm1, self.lm3d_std) trans_params = np.array([float(item) for item in np.hsplit(trans_params, 5)]).astype(np.float32) im_t = torch.tensor(np.array(im1)/255., dtype=torch.float32).permute(2, 0, 1).to(self.device).unsqueeze(0) with torch.no_grad(): full_coeff = self.net_recon(im_t) coeffs = split_coeff(full_coeff) pred_coeff = {key:coeffs[key].cpu().numpy() for key in coeffs} pred_coeff = np.concatenate([ pred_coeff['exp'], pred_coeff['angle'], pred_coeff['trans'], trans_params[2:][None], ], 1) video_coeffs.append(pred_coeff) full_coeffs.append(full_coeff.cpu().numpy()) semantic_npy = np.array(video_coeffs)[:,0] savemat(coeff_path, {'coeff_3dmm': semantic_npy, 'full_3dmm': np.array(full_coeffs)[0]}) return coeff_path, png_path, original_size