import torch from time import gmtime, strftime import os, sys, shutil from argparse import ArgumentParser from src.utils.preprocess import CropAndExtract from src.test_audio2coeff import Audio2Coeff from src.facerender.animate import AnimateFromCoeff from src.generate_batch import get_data from src.generate_facerender_batch import get_facerender_data from pydub import AudioSegment def mp3_to_wav(mp3_filename,wav_filename,frame_rate): mp3_file = AudioSegment.from_file(file=mp3_filename) mp3_file.set_frame_rate(frame_rate).export(wav_filename,format="wav") from modules.text2speech import text2speech class SadTalker(): def __init__(self, checkpoint_path='checkpoints'): if torch.cuda.is_available() : device = "cuda" else: device = "cpu" current_code_path = sys.argv[0] modules_path = os.path.split(current_code_path)[0] current_root_path = './' os.environ['TORCH_HOME']=os.path.join(current_root_path, 'checkpoints') path_of_lm_croper = os.path.join(current_root_path, 'checkpoints', 'shape_predictor_68_face_landmarks.dat') path_of_net_recon_model = os.path.join(current_root_path, 'checkpoints', 'epoch_20.pth') dir_of_BFM_fitting = os.path.join(current_root_path, 'checkpoints', 'BFM_Fitting') wav2lip_checkpoint = os.path.join(current_root_path, 'checkpoints', 'wav2lip.pth') audio2pose_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2pose_00140-model.pth') audio2pose_yaml_path = os.path.join(current_root_path, 'config', 'auido2pose.yaml') audio2exp_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2exp_00300-model.pth') audio2exp_yaml_path = os.path.join(current_root_path, 'config', 'auido2exp.yaml') free_view_checkpoint = os.path.join(current_root_path, 'checkpoints', 'facevid2vid_00189-model.pth.tar') mapping_checkpoint = os.path.join(current_root_path, 'checkpoints', 'mapping_00229-model.pth.tar') facerender_yaml_path = os.path.join(current_root_path, 'config', 'facerender.yaml') #init model print(path_of_lm_croper) self.preprocess_model = CropAndExtract(path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, device) print(audio2pose_checkpoint) self.audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path, audio2exp_checkpoint, audio2exp_yaml_path, wav2lip_checkpoint, device) print(free_view_checkpoint) self.animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint, facerender_yaml_path, device) self.device = device def test(self, source_image, driven_audio, still_mode, use_enhancer, result_dir='./'): time_tag = strftime("%Y_%m_%d_%H.%M.%S") save_dir = os.path.join(result_dir, time_tag) os.makedirs(save_dir, exist_ok=True) input_dir = os.path.join(save_dir, 'input') os.makedirs(input_dir, exist_ok=True) print(source_image) pic_path = os.path.join(input_dir, os.path.basename(source_image)) shutil.move(source_image, input_dir) if os.path.isfile(driven_audio): audio_path = os.path.join(input_dir, os.path.basename(driven_audio)) #### mp3 to wav if '.mp3' in audio_path: mp3_to_wav(driven_audio, audio_path.replace('.mp3', '.wav'), 16000) audio_path = audio_path.replace('.mp3', '.wav') else: shutil.move(driven_audio, input_dir) else: text2speech os.makedirs(save_dir, exist_ok=True) pose_style = 0 #crop image and extract 3dmm from image first_frame_dir = os.path.join(save_dir, 'first_frame_dir') os.makedirs(first_frame_dir, exist_ok=True) first_coeff_path, crop_pic_path = self.preprocess_model.generate(pic_path, first_frame_dir) if first_coeff_path is None: raise AttributeError("No face is detected") #audio2ceoff batch = get_data(first_coeff_path, audio_path, self.device) coeff_path = self.audio_to_coeff.generate(batch, save_dir, pose_style) #coeff2video batch_size = 4 data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path, batch_size, still_mode=still_mode) self.animate_from_coeff.generate(data, save_dir, enhancer='gfpgan' if use_enhancer else None) video_name = data['video_name'] print(f'The generated video is named {video_name} in {save_dir}') torch.cuda.empty_cache() torch.cuda.synchronize() if use_enhancer: return os.path.join(save_dir, video_name+'_enhanced.mp4'), os.path.join(save_dir, video_name+'_enhanced.mp4') else: return os.path.join(save_dir, video_name+'.mp4'), os.path.join(save_dir, video_name+'.mp4')