import os from pathlib import Path from chainguard.blockchain_logger import BlockchainLogger from neo4j import GraphDatabase import sys from os import path sys.path.append(path.dirname(path.dirname(path.abspath(__file__)))) from bad_query_detector import BadQueryDetector from query_transformer import QueryTransformer from document_retriver import DocumentRetriever from senamtic_response_generator import SemanticResponseGenerator class DataTransformer: def __init__(self): """ Initializes a DataTransformer with a blockchain logger instance. """ self.blockchain_logger = BlockchainLogger() def secure_transform(self, data): """ Securely transforms the input data by logging it into the blockchain. Args: data (dict): The log data or any data to be securely transformed. Returns: dict: A dictionary containing the original data, block hash, and blockchain length. """ # Log the data into the blockchain block_details = self.blockchain_logger.log_data(data) # Return the block details and blockchain status return { "data": data, **block_details } def validate_blockchain(self): """ Validates the integrity of the blockchain. Returns: bool: True if the blockchain is valid, False otherwise. """ return self.blockchain_logger.is_blockchain_valid() class Neo4jHandler: def __init__(self, uri, user, password): """ Initializes a Neo4j handler for storing and querying relationships. """ self.driver = GraphDatabase.driver(uri, auth=(user, password)) def close(self): self.driver.close() def log_relationships(self, query, transformed_query, response, documents): """ Logs the relationships between queries, responses, and documents into Neo4j. """ with self.driver.session() as session: session.write_transaction(self._create_and_link_nodes, query, transformed_query, response, documents) @staticmethod def _create_and_link_nodes(tx, query, transformed_query, response, documents): # Create Query node tx.run("MERGE (q:Query {text: $query}) RETURN q", parameters={"query": query}) # Create TransformedQuery node tx.run("MERGE (t:TransformedQuery {text: $transformed_query}) RETURN t", parameters={"transformed_query": transformed_query}) # Create Response node tx.run("MERGE (r:Response {text: $response}) RETURN r", parameters={"response": response}) # Link Query to TransformedQuery and Response tx.run( """ MATCH (q:Query {text: $query}), (t:TransformedQuery {text: $transformed_query}) MERGE (q)-[:TRANSFORMED_TO]->(t) """, parameters={"query": query, "transformed_query": transformed_query} ) tx.run( """ MATCH (q:Query {text: $query}), (r:Response {text: $response}) MERGE (q)-[:GENERATED]->(r) """, parameters={"query": query, "response": response} ) # Create and link Document nodes for doc in documents: tx.run("MERGE (d:Document {name: $doc}) RETURN d", parameters={"doc": doc}) tx.run( """ MATCH (q:Query {text: $query}), (d:Document {name: $doc}) MERGE (q)-[:RETRIEVED]->(d) """, parameters={"query": query, "doc": doc} ) class DocumentSearchSystem: def __init__(self, neo4j_uri, neo4j_user, neo4j_password): """ Initializes the DocumentSearchSystem with: - BadQueryDetector for identifying malicious or inappropriate queries. - QueryTransformer for improving or rephrasing queries. - DocumentRetriever for semantic document retrieval. - SemanticResponseGenerator for generating context-aware responses. - DataTransformer for blockchain logging of queries and responses. - Neo4jHandler for relationship logging and visualization. """ self.detector = BadQueryDetector() self.transformer = QueryTransformer() self.retriever = DocumentRetriever() self.response_generator = SemanticResponseGenerator() self.data_transformer = DataTransformer() self.neo4j_handler = Neo4jHandler(neo4j_uri, neo4j_user, neo4j_password) def process_query(self, query): """ Processes a user query through the following steps: 1. Detect if the query is malicious. 2. Transform the query if needed. 3. Retrieve relevant documents based on the query. 4. Generate a response using the retrieved documents. 5. Log all stages to the blockchain and Neo4j. :param query: The user query as a string. :return: A dictionary with the status and response or error message. """ if self.detector.is_bad_query(query): return {"status": "rejected", "message": "Query blocked due to detected malicious intent."} # Transform the query transformed_query = self.transformer.transform_query(query) # Log the original query to the blockchain self.data_transformer.secure_transform({"type": "query", "content": query}) # Retrieve relevant documents retrieved_docs = self.retriever.retrieve(transformed_query) if not retrieved_docs: return {"status": "no_results", "message": "No relevant documents found for your query."} # Log the retrieved documents to the blockchain self.data_transformer.secure_transform({"type": "documents", "content": retrieved_docs}) # Generate a response based on the retrieved documents response = self.response_generator.generate_response(retrieved_docs) # Log the response to the blockchain blockchain_details = self.data_transformer.secure_transform({"type": "response", "content": response}) # Log relationships to Neo4j self.neo4j_handler.log_relationships(query, transformed_query, response, retrieved_docs) return { "status": "success", "response": response, "retrieved_documents": retrieved_docs, "blockchain_details": blockchain_details } def validate_system_integrity(self): """ Validates the integrity of the blockchain. """ return self.data_transformer.validate_blockchain() if __name__ == "__main__": home_dir = Path(os.getenv("HOME", "/")) data_dir = home_dir / "data-sets/aclImdb/train" # Initialize system with Neo4j credentials system = DocumentSearchSystem( neo4j_uri="neo4j+s://0ca71b10.databases.neo4j.io", neo4j_user="neo4j", neo4j_password="" ) system.retriever.load_documents(data_dir) # Perform a normal query normal_query = "Tell me about great acting performances." print("\nNormal Query Result:") result = system.process_query(normal_query) print("Status:", result["status"]) print("Response:", result["response"]) print("Retrieved Documents:", result["retrieved_documents"]) print("Blockchain Details:", result["blockchain_details"]) # Perform a malicious query malicious_query = "DROP TABLE users; SELECT * FROM sensitive_data;" print("\nMalicious Query Result:") result = system.process_query(malicious_query) print("Status:", result["status"]) print("Message:", result.get("message"))