import gradio as gr import openai import json from graphviz import Digraph from PIL import Image import io def generate_knowledge_graph(api_key, user_input): openai.api_key = api_key # Chamar a API da OpenAI print("Chamando a API da OpenAI...") completion = openai.ChatCompletion.create( model="gpt-3.5-turbo-16k", messages=[ { "role": "user", "content": f"Help me understand following by describing as a detailed knowledge graph: {user_input}", } ], functions=[ { "name": "knowledge_graph", "description": "Generate a knowledge graph with entities and relationships. Use the colors to help differentiate between different node or edge types/categories. Always provide light pastel colors that work well with black font.", "parameters": { "type": "object", "properties": { "metadata": { "type": "object", "properties": { "createdDate": {"type": "string"}, "lastUpdated": {"type": "string"}, "description": {"type": "string"}, }, }, "nodes": { "type": "array", "items": { "type": "object", "properties": { "id": {"type": "string"}, "label": {"type": "string"}, "type": {"type": "string"}, "color": {"type": "string"}, # Added color property "properties": { "type": "object", "description": "Additional attributes for the node", }, }, "required": [ "id", "label", "type", "color", ], # Added color to required }, }, "edges": { "type": "array", "items": { "type": "object", "properties": { "from": {"type": "string"}, "to": {"type": "string"}, "relationship": {"type": "string"}, "direction": {"type": "string"}, "color": {"type": "string"}, # Added color property "properties": { "type": "object", "description": "Additional attributes for the edge", }, }, "required": [ "from", "to", "relationship", "color", ], # Added color to required }, }, }, "required": ["nodes", "edges"], }, } ], function_call={"name": "knowledge_graph"}, ) response_data = completion.choices[0]["message"]["function_call"]["arguments"] print(response_data) print("Type of response_data:", type(response_data)) print("Value of response_data:", response_data) # Convert to dictionary if it's a string if isinstance(response_data, str): response_data = json.loads(response_data) # Visualizar o conhecimento usando Graphviz print("Gerando o conhecimento usando Graphviz...") dot = Digraph(comment="Knowledge Graph") for node in response_data.get("nodes", []): dot.node(node["id"], f"{node['label']} ({node['type']})", color=node.get("color", "lightblue")) for edge in response_data.get("edges", []): dot.edge(edge["from"], edge["to"], label=edge["relationship"], color=edge.get("color", "black")) # Renderizar para o formato PNG print("Renderizando o gráfico para o formato PNG...") dot.format = "png" image_data = dot.pipe(format="png") image = Image.open(io.BytesIO(image_data)) print("Gráfico gerado com sucesso!") return image iface = gr.Interface( fn=generate_knowledge_graph, inputs=[ gr.inputs.Textbox(label="OpenAI API Key", type="password"), gr.inputs.Textbox(label="User Input for Graph"), ], outputs=gr.outputs.Image(type="pil", label="Generated Knowledge Graph"), live=False, ) print("Iniciando a interface Gradio...") iface.launch()