|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.nn.utils.spectral_norm as spectral_norm |
|
from torch.autograd import Function |
|
from utils import util, cielab |
|
import cv2, math, random |
|
|
|
def tensor2array(tensors): |
|
arrays = tensors.detach().to("cpu").numpy() |
|
return np.transpose(arrays, (0, 2, 3, 1)) |
|
|
|
|
|
def rgb2gray(color_batch): |
|
|
|
gray_batch = color_batch[:, 0, ...] * 0.299 + color_batch[:, 1, ...] * 0.587 + color_batch[:, 2, ...] * 0.114 |
|
gray_batch = gray_batch.unsqueeze_(1) |
|
return gray_batch |
|
|
|
|
|
def getParamsAmount(model): |
|
params = list(model.parameters()) |
|
count = 0 |
|
for var in params: |
|
l = 1 |
|
for j in var.size(): |
|
l *= j |
|
count += l |
|
return count |
|
|
|
|
|
def checkAverageGradient(model): |
|
meanGrad, cnt = 0.0, 0 |
|
for name, parms in model.named_parameters(): |
|
if parms.requires_grad: |
|
meanGrad += torch.mean(torch.abs(parms.grad)) |
|
cnt += 1 |
|
return meanGrad.item() / cnt |
|
|
|
|
|
def get_random_mask(N, H, W, minNum, maxNum): |
|
binary_maps = np.zeros((N, H*W), np.float32) |
|
for i in range(N): |
|
locs = random.sample(range(0, H*W), random.randint(minNum,maxNum)) |
|
binary_maps[i, locs] = 1 |
|
return binary_maps.reshape(N,1,H,W) |
|
|
|
|
|
def io_user_control(hint_mask, spix_colors, output=True): |
|
cache_dir = '/apdcephfs/private_richardxia' |
|
if output: |
|
print('--- data saving') |
|
mask_imgs = tensor2array(hint_mask) * 2.0 - 1.0 |
|
util.save_images_from_batch(mask_imgs, cache_dir, ['mask.png'], -1) |
|
fake_gray = torch.zeros_like(spix_colors[:,[0],:,:]) |
|
spix_labs = torch.cat((fake_gray,spix_colors), dim=1) |
|
spix_imgs = tensor2array(spix_labs) |
|
util.save_normLabs_from_batch(spix_imgs, cache_dir, ['color.png'], -1) |
|
return hint_mask, spix_colors |
|
else: |
|
print('--- data loading') |
|
mask_img = cv2.imread(cache_dir+'/mask.png', cv2.IMREAD_GRAYSCALE) |
|
mask_img = np.expand_dims(mask_img, axis=2) / 255. |
|
hint_mask = torch.from_numpy(mask_img.transpose((2, 0, 1))) |
|
hint_mask = hint_mask.unsqueeze(0).cuda() |
|
bgr_img = cv2.imread(cache_dir+'/color.png', cv2.IMREAD_COLOR) |
|
rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB) |
|
rgb_img = np.array(rgb_img / 255., np.float32) |
|
lab_img = cv2.cvtColor(rgb_img, cv2.COLOR_RGB2LAB) |
|
lab_img = torch.from_numpy(lab_img.transpose((2, 0, 1))) |
|
ab_chans = lab_img[1:3,:,:] / 110. |
|
spix_colors = ab_chans.unsqueeze(0).cuda() |
|
return hint_mask.float(), spix_colors.float() |
|
|
|
|
|
class Quantize(Function): |
|
@staticmethod |
|
def forward(ctx, x): |
|
ctx.save_for_backward(x) |
|
y = x.round() |
|
return y |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
""" |
|
In the backward pass we receive a Tensor containing the gradient of the loss |
|
with respect to the output, and we need to compute the gradient of the loss |
|
with respect to the input. |
|
""" |
|
inputX = ctx.saved_tensors |
|
return grad_output |
|
|
|
|
|
def mark_color_hints(input_grays, target_ABs, gate_maps, kernel_size=3, base_ABs=None): |
|
|
|
binary_map = torch.where(gate_maps>0.7, torch.ones_like(gate_maps), torch.zeros_like(gate_maps)) |
|
center_mask = dilate_seeds(binary_map, kernel_size=kernel_size) |
|
margin_mask = dilate_seeds(binary_map, kernel_size=kernel_size+2) - center_mask |
|
|
|
dilated_seeds = dilate_seeds(gate_maps, kernel_size=kernel_size+2) |
|
marked_grays = torch.where(margin_mask > 1e-5, torch.ones_like(gate_maps), input_grays) |
|
if base_ABs is None: |
|
marked_ABs = torch.where(center_mask < 1e-5, torch.zeros_like(target_ABs), target_ABs) |
|
else: |
|
marked_ABs = torch.where(margin_mask > 1e-5, torch.zeros_like(base_ABs), base_ABs) |
|
marked_ABs = torch.where(center_mask > 1e-5, target_ABs, marked_ABs) |
|
return torch.cat((marked_grays,marked_ABs), dim=1) |
|
|
|
def dilate_seeds(gate_maps, kernel_size=3): |
|
N,C,H,W = gate_maps.shape |
|
input_unf = F.unfold(gate_maps, kernel_size, padding=kernel_size//2) |
|
|
|
dilated_seeds, _ = torch.max(input_unf, dim=1, keepdim=True) |
|
output = F.fold(dilated_seeds, output_size=(H,W), kernel_size=1) |
|
|
|
return output |
|
|
|
|
|
class RebalanceLoss(Function): |
|
@staticmethod |
|
def forward(ctx, data_input, weights): |
|
ctx.save_for_backward(weights) |
|
return data_input.clone() |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
weights, = ctx.saved_tensors |
|
|
|
|
|
grad_input = grad_output * weights |
|
|
|
|
|
return grad_input, None |
|
|
|
|
|
class GetClassWeights: |
|
def __init__(self, cielab, lambda_=0.5, device='cuda'): |
|
prior = torch.from_numpy(cielab.gamut.prior).cuda() |
|
uniform = torch.zeros_like(prior) |
|
uniform[prior > 0] = 1 / (prior > 0).sum().type_as(uniform) |
|
self.weights = 1 / ((1 - lambda_) * prior + lambda_ * uniform) |
|
self.weights /= torch.sum(prior * self.weights) |
|
|
|
def __call__(self, ab_actual): |
|
return self.weights[ab_actual.argmax(dim=1, keepdim=True)] |
|
|
|
|
|
class ColorLabel: |
|
def __init__(self, lambda_=0.5, device='cuda'): |
|
self.cielab = cielab.CIELAB() |
|
self.q_to_ab = torch.from_numpy(self.cielab.q_to_ab).to(device) |
|
prior = torch.from_numpy(self.cielab.gamut.prior).to(device) |
|
uniform = torch.zeros_like(prior) |
|
uniform[prior>0] = 1 / (prior>0).sum().type_as(uniform) |
|
self.weights = 1 / ((1-lambda_) * prior + lambda_ * uniform) |
|
self.weights /= torch.sum(prior * self.weights) |
|
|
|
def visualize_label(self, step=3): |
|
height, width = 200, 313*step |
|
label_lab = np.ones((height,width,3), np.float32) |
|
for x in range(313): |
|
ab = self.cielab.q_to_ab[x,:] |
|
label_lab[:,step*x:step*(x+1),1:] = ab / 110. |
|
label_lab[:,:,0] = np.zeros((height,width), np.float32) |
|
return label_lab |
|
|
|
@staticmethod |
|
def _gauss_eval(x, mu, sigma): |
|
norm = 1 / (2 * math.pi * sigma) |
|
return norm * torch.exp(-torch.sum((x - mu)**2, dim=0) / (2 * sigma**2)) |
|
|
|
def get_classweights(self, batch_gt_indx): |
|
|
|
return self.weights[batch_gt_indx] |
|
|
|
def encode_ab2ind(self, batch_ab, neighbours=5, sigma=5.0): |
|
batch_ab = batch_ab * 110. |
|
n, _, h, w = batch_ab.shape |
|
m = n * h * w |
|
|
|
ab_ = batch_ab.permute(1, 0, 2, 3).reshape(2, -1) |
|
cdist = torch.cdist(self.q_to_ab, ab_.t()) |
|
nns = cdist.argsort(dim=0)[:neighbours, :] |
|
|
|
nn_gauss = batch_ab.new_zeros(neighbours, m) |
|
for i in range(neighbours): |
|
nn_gauss[i, :] = self._gauss_eval(self.q_to_ab[nns[i, :], :].t(), ab_, sigma) |
|
nn_gauss /= nn_gauss.sum(dim=0, keepdim=True) |
|
|
|
bins = self.cielab.gamut.EXPECTED_SIZE |
|
q = batch_ab.new_zeros(bins, m) |
|
q[nns, torch.arange(m).repeat(neighbours, 1)] = nn_gauss |
|
return q.reshape(bins, n, h, w).permute(1, 0, 2, 3) |
|
|
|
def decode_ind2ab(self, batch_q, T=0.38): |
|
_, _, h, w = batch_q.shape |
|
batch_q = F.softmax(batch_q, dim=1) |
|
if T%1 == 0: |
|
|
|
sorted_probs, batch_indexs = torch.sort(batch_q, dim=1, descending=True) |
|
|
|
|
|
batch_indexs = batch_indexs[:,T:T+1,:,:] |
|
|
|
ab = torch.stack([ |
|
self.q_to_ab.index_select(0, q_i.flatten()).reshape(h,w,2).permute(2,0,1) |
|
for q_i in batch_indexs]) |
|
else: |
|
batch_q = torch.exp(batch_q / T) |
|
batch_q /= batch_q.sum(dim=1, keepdim=True) |
|
a = torch.tensordot(batch_q, self.q_to_ab[:,0], dims=((1,), (0,))) |
|
a = a.unsqueeze(dim=1) |
|
b = torch.tensordot(batch_q, self.q_to_ab[:,1], dims=((1,), (0,))) |
|
b = b.unsqueeze(dim=1) |
|
ab = torch.cat((a, b), dim=1) |
|
ab = ab / 110. |
|
return ab.type(batch_q.dtype) |
|
|
|
|
|
def init_spixel_grid(img_height, img_width, spixel_size=16): |
|
|
|
n_spixl_h = int(np.floor(img_height/spixel_size)) |
|
n_spixl_w = int(np.floor(img_width/spixel_size)) |
|
spixel_height = int(img_height / (1. * n_spixl_h)) |
|
spixel_width = int(img_width / (1. * n_spixl_w)) |
|
spix_values = np.int32(np.arange(0, n_spixl_w * n_spixl_h).reshape((n_spixl_h, n_spixl_w))) |
|
|
|
def shift9pos(input, h_shift_unit=1, w_shift_unit=1): |
|
|
|
input_pd = np.pad(input, ((h_shift_unit, h_shift_unit), (w_shift_unit, w_shift_unit)), mode='edge') |
|
input_pd = np.expand_dims(input_pd, axis=0) |
|
|
|
top = input_pd[:, :-2 * h_shift_unit, w_shift_unit:-w_shift_unit] |
|
bottom = input_pd[:, 2 * h_shift_unit:, w_shift_unit:-w_shift_unit] |
|
left = input_pd[:, h_shift_unit:-h_shift_unit, :-2 * w_shift_unit] |
|
right = input_pd[:, h_shift_unit:-h_shift_unit, 2 * w_shift_unit:] |
|
center = input_pd[:,h_shift_unit:-h_shift_unit,w_shift_unit:-w_shift_unit] |
|
bottom_right = input_pd[:, 2 * h_shift_unit:, 2 * w_shift_unit:] |
|
bottom_left = input_pd[:, 2 * h_shift_unit:, :-2 * w_shift_unit] |
|
top_right = input_pd[:, :-2 * h_shift_unit, 2 * w_shift_unit:] |
|
top_left = input_pd[:, :-2 * h_shift_unit, :-2 * w_shift_unit] |
|
shift_tensor = np.concatenate([ top_left, top, top_right, |
|
left, center, right, |
|
bottom_left, bottom, bottom_right], axis=0) |
|
return shift_tensor |
|
|
|
spix_idx_tensor_ = shift9pos(spix_values) |
|
spix_idx_tensor = np.repeat( |
|
np.repeat(spix_idx_tensor_, spixel_height, axis=1), spixel_width, axis=2) |
|
spixel_id_tensor = torch.from_numpy(spix_idx_tensor).type(torch.float) |
|
|
|
|
|
all_h_coords = np.arange(0, img_height, 1) |
|
all_w_coords = np.arange(0, img_width, 1) |
|
curr_pxl_coord = np.array(np.meshgrid(all_h_coords, all_w_coords, indexing='ij')) |
|
coord_feat_tensor = np.concatenate([curr_pxl_coord[1:2, :, :], curr_pxl_coord[:1, :, :]]) |
|
coord_feat_tensor = torch.from_numpy(coord_feat_tensor).type(torch.float) |
|
|
|
return spixel_id_tensor, coord_feat_tensor |
|
|
|
|
|
def split_spixels(assign_map, spixel_ids): |
|
N,C,H,W = assign_map.shape |
|
spixel_id_map = spixel_ids.expand(N,-1,-1,-1) |
|
assig_max,_ = torch.max(assign_map, dim=1, keepdim=True) |
|
assignment_ = torch.where(assign_map == assig_max, torch.ones(assign_map.shape).cuda(),torch.zeros(assign_map.shape).cuda()) |
|
|
|
new_spixl_map_ = spixel_id_map * assignment_ |
|
new_spixl_map = torch.sum(new_spixl_map_,dim=1,keepdim=True).type(torch.int) |
|
return new_spixl_map |
|
|
|
|
|
def poolfeat(input, prob, sp_h=2, sp_w=2, need_entry_prob=False): |
|
def feat_prob_sum(feat_sum, prob_sum, shift_feat): |
|
feat_sum += shift_feat[:, :-1, :, :] |
|
prob_sum += shift_feat[:, -1:, :, :] |
|
return feat_sum, prob_sum |
|
|
|
b, _, h, w = input.shape |
|
h_shift_unit = 1 |
|
w_shift_unit = 1 |
|
p2d = (w_shift_unit, w_shift_unit, h_shift_unit, h_shift_unit) |
|
feat_ = torch.cat([input, torch.ones([b, 1, h, w], device=input.device)], dim=1) |
|
prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 0, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) |
|
send_to_top_left = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, 2 * h_shift_unit:, 2 * w_shift_unit:] |
|
feat_sum = send_to_top_left[:, :-1, :, :].clone() |
|
prob_sum = send_to_top_left[:, -1:, :, :].clone() |
|
|
|
prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 1, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) |
|
top = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, 2 * h_shift_unit:, w_shift_unit:-w_shift_unit] |
|
feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, top) |
|
|
|
prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 2, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) |
|
top_right = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, 2 * h_shift_unit:, :-2 * w_shift_unit] |
|
feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, top_right) |
|
|
|
prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 3, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) |
|
left = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, h_shift_unit:-h_shift_unit, 2 * w_shift_unit:] |
|
feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, left) |
|
|
|
prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 4, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) |
|
center = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, h_shift_unit:-h_shift_unit, w_shift_unit:-w_shift_unit] |
|
feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, center) |
|
|
|
prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 5, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) |
|
right = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, h_shift_unit:-h_shift_unit, :-2 * w_shift_unit] |
|
feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, right) |
|
|
|
prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 6, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) |
|
bottom_left = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, :-2 * h_shift_unit, 2 * w_shift_unit:] |
|
feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, bottom_left) |
|
|
|
prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 7, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) |
|
bottom = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, :-2 * h_shift_unit, w_shift_unit:-w_shift_unit] |
|
feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, bottom) |
|
|
|
prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 8, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) |
|
bottom_right = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, :-2 * h_shift_unit, :-2 * w_shift_unit] |
|
feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, bottom_right) |
|
pooled_feat = feat_sum / (prob_sum + 1e-8) |
|
if need_entry_prob: |
|
return pooled_feat, prob_sum |
|
return pooled_feat |
|
|
|
|
|
def get_spixel_size(affinity_map, sp_h=2, sp_w=2, elem_thres=25): |
|
N,C,H,W = affinity_map.shape |
|
device = affinity_map.device |
|
assign_max,_ = torch.max(affinity_map, dim=1, keepdim=True) |
|
assign_map = torch.where(affinity_map==assign_max, torch.ones(affinity_map.shape, device=device), torch.zeros(affinity_map.shape, device=device)) |
|
|
|
_, elem_num_maps = poolfeat(torch.ones(assign_max.shape, device=device), assign_map, sp_h, sp_w, True) |
|
|
|
|
|
return elem_num_maps |
|
|
|
|
|
def upfeat(input, prob, up_h=2, up_w=2): |
|
|
|
|
|
b, c, h, w = input.shape |
|
|
|
h_shift = 1 |
|
w_shift = 1 |
|
|
|
p2d = (w_shift, w_shift, h_shift, h_shift) |
|
feat_pd = F.pad(input, p2d, mode='constant', value=0) |
|
|
|
gt_frm_top_left = F.interpolate(feat_pd[:, :, :-2 * h_shift, :-2 * w_shift], size=(h * up_h, w * up_w),mode='nearest') |
|
feat_sum = gt_frm_top_left * prob.narrow(1,0,1) |
|
|
|
top = F.interpolate(feat_pd[:, :, :-2 * h_shift, w_shift:-w_shift], size=(h * up_h, w * up_w), mode='nearest') |
|
feat_sum += top * prob.narrow(1, 1, 1) |
|
|
|
top_right = F.interpolate(feat_pd[:, :, :-2 * h_shift, 2 * w_shift:], size=(h * up_h, w * up_w), mode='nearest') |
|
feat_sum += top_right * prob.narrow(1,2,1) |
|
|
|
left = F.interpolate(feat_pd[:, :, h_shift:-w_shift, :-2 * w_shift], size=(h * up_h, w * up_w), mode='nearest') |
|
feat_sum += left * prob.narrow(1, 3, 1) |
|
|
|
center = F.interpolate(input, (h * up_h, w * up_w), mode='nearest') |
|
feat_sum += center * prob.narrow(1, 4, 1) |
|
|
|
right = F.interpolate(feat_pd[:, :, h_shift:-w_shift, 2 * w_shift:], size=(h * up_h, w * up_w), mode='nearest') |
|
feat_sum += right * prob.narrow(1, 5, 1) |
|
|
|
bottom_left = F.interpolate(feat_pd[:, :, 2 * h_shift:, :-2 * w_shift], size=(h * up_h, w * up_w), mode='nearest') |
|
feat_sum += bottom_left * prob.narrow(1, 6, 1) |
|
|
|
bottom = F.interpolate(feat_pd[:, :, 2 * h_shift:, w_shift:-w_shift], size=(h * up_h, w * up_w), mode='nearest') |
|
feat_sum += bottom * prob.narrow(1, 7, 1) |
|
|
|
bottom_right = F.interpolate(feat_pd[:, :, 2 * h_shift:, 2 * w_shift:], size=(h * up_h, w * up_w), mode='nearest') |
|
feat_sum += bottom_right * prob.narrow(1, 8, 1) |
|
|
|
return feat_sum |
|
|
|
|
|
def suck_and_spread(self, base_maps, seg_layers): |
|
N,S,H,W = seg_layers.shape |
|
base_maps = base_maps.unsqueeze(1) |
|
seg_layers = seg_layers.unsqueeze(2) |
|
|
|
mean_val_layers = (base_maps * seg_layers).sum(dim=(3,4), keepdim=True) / (1e-5 + seg_layers.sum(dim=(3,4), keepdim=True)) |
|
|
|
weight_layers = seg_layers / (1e-5 + torch.sum(seg_layers, dim=1, keepdim=True)) |
|
|
|
recon_maps = mean_val_layers * weight_layers |
|
return recon_maps.sum(dim=1) |
|
|
|
|
|
|
|
|
|
|
|
def rgb2xyz(rgb): |
|
|
|
|
|
|
|
mask = (rgb > .04045).type(torch.FloatTensor) |
|
if(rgb.is_cuda): |
|
mask = mask.cuda() |
|
rgb = (((rgb+.055)/1.055)**2.4)*mask + rgb/12.92*(1-mask) |
|
x = .412453*rgb[:,0,:,:]+.357580*rgb[:,1,:,:]+.180423*rgb[:,2,:,:] |
|
y = .212671*rgb[:,0,:,:]+.715160*rgb[:,1,:,:]+.072169*rgb[:,2,:,:] |
|
z = .019334*rgb[:,0,:,:]+.119193*rgb[:,1,:,:]+.950227*rgb[:,2,:,:] |
|
out = torch.cat((x[:,None,:,:],y[:,None,:,:],z[:,None,:,:]),dim=1) |
|
return out |
|
|
|
def xyz2rgb(xyz): |
|
|
|
|
|
|
|
r = 3.24048134*xyz[:,0,:,:]-1.53715152*xyz[:,1,:,:]-0.49853633*xyz[:,2,:,:] |
|
g = -0.96925495*xyz[:,0,:,:]+1.87599*xyz[:,1,:,:]+.04155593*xyz[:,2,:,:] |
|
b = .05564664*xyz[:,0,:,:]-.20404134*xyz[:,1,:,:]+1.05731107*xyz[:,2,:,:] |
|
rgb = torch.cat((r[:,None,:,:],g[:,None,:,:],b[:,None,:,:]),dim=1) |
|
|
|
rgb = torch.max(rgb,torch.zeros_like(rgb)) |
|
mask = (rgb > .0031308).type(torch.FloatTensor) |
|
if(rgb.is_cuda): |
|
mask = mask.cuda() |
|
rgb = (1.055*(rgb**(1./2.4)) - 0.055)*mask + 12.92*rgb*(1-mask) |
|
return rgb |
|
|
|
def xyz2lab(xyz): |
|
|
|
sc = torch.Tensor((0.95047, 1., 1.08883))[None,:,None,None] |
|
if(xyz.is_cuda): |
|
sc = sc.cuda() |
|
xyz_scale = xyz/sc |
|
mask = (xyz_scale > .008856).type(torch.FloatTensor) |
|
if(xyz_scale.is_cuda): |
|
mask = mask.cuda() |
|
xyz_int = xyz_scale**(1/3.)*mask + (7.787*xyz_scale + 16./116.)*(1-mask) |
|
L = 116.*xyz_int[:,1,:,:]-16. |
|
a = 500.*(xyz_int[:,0,:,:]-xyz_int[:,1,:,:]) |
|
b = 200.*(xyz_int[:,1,:,:]-xyz_int[:,2,:,:]) |
|
out = torch.cat((L[:,None,:,:],a[:,None,:,:],b[:,None,:,:]),dim=1) |
|
return out |
|
|
|
def lab2xyz(lab): |
|
y_int = (lab[:,0,:,:]+16.)/116. |
|
x_int = (lab[:,1,:,:]/500.) + y_int |
|
z_int = y_int - (lab[:,2,:,:]/200.) |
|
if(z_int.is_cuda): |
|
z_int = torch.max(torch.Tensor((0,)).cuda(), z_int) |
|
else: |
|
z_int = torch.max(torch.Tensor((0,)), z_int) |
|
out = torch.cat((x_int[:,None,:,:],y_int[:,None,:,:],z_int[:,None,:,:]),dim=1) |
|
mask = (out > .2068966).type(torch.FloatTensor) |
|
if(out.is_cuda): |
|
mask = mask.cuda() |
|
out = (out**3.)*mask + (out - 16./116.)/7.787*(1-mask) |
|
sc = torch.Tensor((0.95047, 1., 1.08883))[None,:,None,None] |
|
sc = sc.to(out.device) |
|
out = out*sc |
|
return out |
|
|
|
def rgb2lab(rgb, l_mean=50, l_norm=50, ab_norm=110): |
|
|
|
|
|
lab = xyz2lab(rgb2xyz(rgb)) |
|
l_rs = (lab[:,[0],:,:]-l_mean) / l_norm |
|
ab_rs = lab[:,1:,:,:] / ab_norm |
|
out = torch.cat((l_rs,ab_rs),dim=1) |
|
return out |
|
|
|
def lab2rgb(lab_rs, l_mean=50, l_norm=50, ab_norm=110): |
|
|
|
|
|
l_ = lab_rs[:,[0],:,:] * l_norm + l_mean |
|
ab = lab_rs[:,1:,:,:] * ab_norm |
|
lab = torch.cat((l_,ab), dim=1) |
|
out = xyz2rgb(lab2xyz(lab)) |
|
return out |
|
|
|
|
|
if __name__ == '__main__': |
|
minL, minA, minB = 999., 999., 999. |
|
maxL, maxA, maxB = 0., 0., 0. |
|
for r in range(256): |
|
print('h',r) |
|
for g in range(256): |
|
for b in range(256): |
|
rgb = np.array([r,g,b], np.float32).reshape(1,1,-1) / 255.0 |
|
|
|
rgb = torch.from_numpy(rgb.transpose((2, 0, 1))) |
|
rgb = rgb.reshape(1,3,1,1) |
|
lab = rgb2lab(rgb) |
|
lab[:,[0],:,:] = lab[:,[0],:,:] * 50 + 50 |
|
lab[:,1:,:,:] = lab[:,1:,:,:] * 110 |
|
lab = lab.squeeze() |
|
lab_float = lab.numpy() |
|
|
|
minL = min(lab_float[0], minL) |
|
minA = min(lab_float[1], minA) |
|
minB = min(lab_float[2], minB) |
|
maxL = max(lab_float[0], maxL) |
|
maxA = max(lab_float[1], maxA) |
|
maxB = max(lab_float[2], maxB) |
|
print('L:', minL, maxL) |
|
print('A:', minA, maxA) |
|
print('B:', minB, maxB) |