import cv2 import numpy as np from skimage import transform as trans src1 = np.array([[51.642, 50.115], [57.617, 49.990], [35.740, 69.007], [51.157, 89.050], [57.025, 89.702]], dtype=np.float32) #<--left src2 = np.array([[45.031, 50.118], [65.568, 50.872], [39.677, 68.111], [45.177, 86.190], [64.246, 86.758]], dtype=np.float32) #---frontal src3 = np.array([[39.730, 51.138], [72.270, 51.138], [56.000, 68.493], [42.463, 87.010], [69.537, 87.010]], dtype=np.float32) #-->right src4 = np.array([[46.845, 50.872], [67.382, 50.118], [72.737, 68.111], [48.167, 86.758], [67.236, 86.190]], dtype=np.float32) #-->right profile src5 = np.array([[54.796, 49.990], [60.771, 50.115], [76.673, 69.007], [55.388, 89.702], [61.257, 89.050]], dtype=np.float32) src = np.array([src1, src2, src3, src4, src5]) src_map = {112: src, 224: src * 2} arcface_src = np.array( [[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366], [41.5493, 92.3655], [70.7299, 92.2041]], dtype=np.float32) arcface_src = np.expand_dims(arcface_src, axis=0) # In[66]: # lmk is prediction; src is template def estimate_norm(lmk, image_size=112, mode='arcface'): assert lmk.shape == (5, 2) tform = trans.SimilarityTransform() lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1) min_M = [] min_index = [] min_error = float('inf') if mode == 'arcface': if image_size == 112: src = arcface_src else: src = float(image_size) / 112 * arcface_src else: src = src_map[image_size] for i in np.arange(src.shape[0]): tform.estimate(lmk, src[i]) M = tform.params[0:2, :] results = np.dot(M, lmk_tran.T) results = results.T error = np.sum(np.sqrt(np.sum((results - src[i])**2, axis=1))) # print(error) if error < min_error: min_error = error min_M = M min_index = i return min_M, min_index def norm_crop(img, landmark, image_size=112, mode='arcface'): M, pose_index = estimate_norm(landmark, image_size, mode) warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0) return warped def square_crop(im, S): if im.shape[0] > im.shape[1]: height = S width = int(float(im.shape[1]) / im.shape[0] * S) scale = float(S) / im.shape[0] else: width = S height = int(float(im.shape[0]) / im.shape[1] * S) scale = float(S) / im.shape[1] resized_im = cv2.resize(im, (width, height)) det_im = np.zeros((S, S, 3), dtype=np.uint8) det_im[:resized_im.shape[0], :resized_im.shape[1], :] = resized_im return det_im, scale def transform(data, center, output_size, scale, rotation): scale_ratio = scale rot = float(rotation) * np.pi / 180.0 #translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio) t1 = trans.SimilarityTransform(scale=scale_ratio) cx = center[0] * scale_ratio cy = center[1] * scale_ratio t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy)) t3 = trans.SimilarityTransform(rotation=rot) t4 = trans.SimilarityTransform(translation=(output_size / 2, output_size / 2)) t = t1 + t2 + t3 + t4 M = t.params[0:2] cropped = cv2.warpAffine(data, M, (output_size, output_size), borderValue=0.0) return cropped, M def trans_points2d(pts, M): new_pts = np.zeros(shape=pts.shape, dtype=np.float32) for i in range(pts.shape[0]): pt = pts[i] new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) new_pt = np.dot(M, new_pt) #print('new_pt', new_pt.shape, new_pt) new_pts[i] = new_pt[0:2] return new_pts def trans_points3d(pts, M): scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1]) #print(scale) new_pts = np.zeros(shape=pts.shape, dtype=np.float32) for i in range(pts.shape[0]): pt = pts[i] new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) new_pt = np.dot(M, new_pt) #print('new_pt', new_pt.shape, new_pt) new_pts[i][0:2] = new_pt[0:2] new_pts[i][2] = pts[i][2] * scale return new_pts def trans_points(pts, M): if pts.shape[1] == 2: return trans_points2d(pts, M) else: return trans_points3d(pts, M)