import os import cv2 import glob import time import torch import shutil import argparse import platform import datetime import subprocess import insightface import onnxruntime import numpy as np import gradio as gr import threading import queue from tqdm import tqdm import concurrent.futures from moviepy.editor import VideoFileClip from face_swapper import Inswapper, paste_to_whole from face_analyser import detect_conditions, get_analysed_data, swap_options_list from face_parsing import init_parsing_model, get_parsed_mask, mask_regions, mask_regions_to_list from face_enhancer import get_available_enhancer_names, load_face_enhancer_model, cv2_interpolations from utils import trim_video, StreamerThread, ProcessBar, open_directory, split_list_by_lengths, merge_img_sequence_from_ref, create_image_grid ## ------------------------------ USER ARGS ------------------------------ parser = argparse.ArgumentParser(description="Swap-Mukham Face Swapper") parser.add_argument("--out_dir", help="Default Output directory", default=os.getcwd()) parser.add_argument("--batch_size", help="Gpu batch size", default=32) parser.add_argument("--cuda", action="store_true", help="Enable cuda", default=False) parser.add_argument( "--colab", action="store_true", help="Enable colab mode", default=False ) user_args = parser.parse_args() ## ------------------------------ DEFAULTS ------------------------------ USE_COLAB = user_args.colab USE_CUDA = user_args.cuda DEF_OUTPUT_PATH = user_args.out_dir BATCH_SIZE = int(user_args.batch_size) WORKSPACE = None OUTPUT_FILE = None CURRENT_FRAME = None STREAMER = None DETECT_CONDITION = "best detection" DETECT_SIZE = 640 DETECT_THRESH = 0.6 NUM_OF_SRC_SPECIFIC = 10 MASK_INCLUDE = [ "Skin", "R-Eyebrow", "L-Eyebrow", "L-Eye", "R-Eye", "Nose", "Mouth", "L-Lip", "U-Lip" ] MASK_SOFT_KERNEL = 17 MASK_SOFT_ITERATIONS = 10 MASK_BLUR_AMOUNT = 0.1 MASK_ERODE_AMOUNT = 0.15 FACE_SWAPPER = None FACE_ANALYSER = None FACE_ENHANCER = None FACE_PARSER = None FACE_ENHANCER_LIST = ["NONE"] FACE_ENHANCER_LIST.extend(get_available_enhancer_names()) FACE_ENHANCER_LIST.extend(cv2_interpolations) ## ------------------------------ SET EXECUTION PROVIDER ------------------------------ # Note: Non CUDA users may change settings here PROVIDER = ["CPUExecutionProvider"] if USE_CUDA: available_providers = onnxruntime.get_available_providers() if "CUDAExecutionProvider" in available_providers: print("\n********** Running on CUDA **********\n") PROVIDER = ["CUDAExecutionProvider", "CPUExecutionProvider"] else: USE_CUDA = False print("\n********** CUDA unavailable running on CPU **********\n") else: USE_CUDA = False print("\n********** Running on CPU **********\n") device = "cuda" if USE_CUDA else "cpu" EMPTY_CACHE = lambda: torch.cuda.empty_cache() if device == "cuda" else None ## ------------------------------ LOAD MODELS ------------------------------ def load_face_analyser_model(name="buffalo_l"): global FACE_ANALYSER if FACE_ANALYSER is None: FACE_ANALYSER = insightface.app.FaceAnalysis(name=name, providers=PROVIDER) FACE_ANALYSER.prepare( ctx_id=0, det_size=(DETECT_SIZE, DETECT_SIZE), det_thresh=DETECT_THRESH ) def load_face_swapper_model(path="./assets/pretrained_models/inswapper_128.onnx"): global FACE_SWAPPER if FACE_SWAPPER is None: batch = int(BATCH_SIZE) if device == "cuda" else 1 FACE_SWAPPER = Inswapper(model_file=path, batch_size=batch, providers=PROVIDER) def load_face_parser_model(path="./assets/pretrained_models/79999_iter.pth"): global FACE_PARSER if FACE_PARSER is None: FACE_PARSER = init_parsing_model(path, device=device) load_face_analyser_model() load_face_swapper_model() ## ------------------------------ MAIN PROCESS ------------------------------ def process( input_type, image_path, video_path, directory_path, source_path, output_path, output_name, keep_output_sequence, condition, age, distance, face_enhancer_name, enable_face_parser, mask_includes, mask_soft_kernel, mask_soft_iterations, blur_amount, erode_amount, face_scale, enable_laplacian_blend, crop_top, crop_bott, crop_left, crop_right, *specifics, ): global WORKSPACE global OUTPUT_FILE global PREVIEW WORKSPACE, OUTPUT_FILE, PREVIEW = None, None, None ## ------------------------------ GUI UPDATE FUNC ------------------------------ def ui_before(): return ( gr.update(visible=True, value=PREVIEW), gr.update(interactive=False), gr.update(interactive=False), gr.update(visible=False), ) def ui_after(): return ( gr.update(visible=True, value=PREVIEW), gr.update(interactive=True), gr.update(interactive=True), gr.update(visible=False), ) def ui_after_vid(): return ( gr.update(visible=False), gr.update(interactive=True), gr.update(interactive=True), gr.update(value=OUTPUT_FILE, visible=True), ) start_time = time.time() total_exec_time = lambda start_time: divmod(time.time() - start_time, 60) get_finsh_text = lambda start_time: f"✔️ Completed in {int(total_exec_time(start_time)[0])} min {int(total_exec_time(start_time)[1])} sec." ## ------------------------------ PREPARE INPUTS & LOAD MODELS ------------------------------ yield "### \n 💊 Loading face analyser model...", *ui_before() load_face_analyser_model() yield "### \n 👑 Loading face swapper model...", *ui_before() load_face_swapper_model() if face_enhancer_name != "NONE": if face_enhancer_name not in cv2_interpolations: yield f"### \n 🔮 Loading {face_enhancer_name} model...", *ui_before() FACE_ENHANCER = load_face_enhancer_model(name=face_enhancer_name, device=device) else: FACE_ENHANCER = None if enable_face_parser: yield "### \n 🧲 Loading face parsing model...", *ui_before() load_face_parser_model() includes = mask_regions_to_list(mask_includes) specifics = list(specifics) half = len(specifics) // 2 sources = specifics[:half] specifics = specifics[half:] if crop_top > crop_bott: crop_top, crop_bott = crop_bott, crop_top if crop_left > crop_right: crop_left, crop_right = crop_right, crop_left crop_mask = (crop_top, 511-crop_bott, crop_left, 511-crop_right) def swap_process(image_sequence): ## ------------------------------ CONTENT CHECK ------------------------------ yield "### \n 📡 Analysing face data...", *ui_before() if condition != "Specific Face": source_data = source_path, age else: source_data = ((sources, specifics), distance) analysed_targets, analysed_sources, whole_frame_list, num_faces_per_frame = get_analysed_data( FACE_ANALYSER, image_sequence, source_data, swap_condition=condition, detect_condition=DETECT_CONDITION, scale=face_scale ) ## ------------------------------ SWAP FUNC ------------------------------ yield "### \n ⚙️ Generating faces...", *ui_before() preds = [] matrs = [] count = 0 global PREVIEW for batch_pred, batch_matr in FACE_SWAPPER.batch_forward(whole_frame_list, analysed_targets, analysed_sources): preds.extend(batch_pred) matrs.extend(batch_matr) EMPTY_CACHE() count += 1 if USE_CUDA: image_grid = create_image_grid(batch_pred, size=128) PREVIEW = image_grid[:, :, ::-1] yield f"### \n ⚙️ Generating face Batch {count}", *ui_before() ## ------------------------------ FACE ENHANCEMENT ------------------------------ generated_len = len(preds) if face_enhancer_name != "NONE": yield f"### \n 📐 Upscaling faces with {face_enhancer_name}...", *ui_before() for idx, pred in tqdm(enumerate(preds), total=generated_len, desc=f"Upscaling with {face_enhancer_name}"): enhancer_model, enhancer_model_runner = FACE_ENHANCER pred = enhancer_model_runner(pred, enhancer_model) preds[idx] = cv2.resize(pred, (512,512)) EMPTY_CACHE() ## ------------------------------ FACE PARSING ------------------------------ if enable_face_parser: yield "### \n 🖇️ Face-parsing mask...", *ui_before() masks = [] count = 0 for batch_mask in get_parsed_mask(FACE_PARSER, preds, classes=includes, device=device, batch_size=BATCH_SIZE, softness=int(mask_soft_iterations)): masks.append(batch_mask) EMPTY_CACHE() count += 1 if len(batch_mask) > 1: image_grid = create_image_grid(batch_mask, size=128) PREVIEW = image_grid[:, :, ::-1] yield f"### \n ✏️ Face parsing Batch {count}", *ui_before() masks = np.concatenate(masks, axis=0) if len(masks) >= 1 else masks else: masks = [None] * generated_len ## ------------------------------ SPLIT LIST ------------------------------ split_preds = split_list_by_lengths(preds, num_faces_per_frame) del preds split_matrs = split_list_by_lengths(matrs, num_faces_per_frame) del matrs split_masks = split_list_by_lengths(masks, num_faces_per_frame) del masks ## ------------------------------ PASTE-BACK ------------------------------ yield "### \n 🛠️ Pasting back...", *ui_before() def post_process(frame_idx, frame_img, split_preds, split_matrs, split_masks, enable_laplacian_blend, crop_mask, blur_amount, erode_amount): whole_img_path = frame_img whole_img = cv2.imread(whole_img_path) blend_method = 'laplacian' if enable_laplacian_blend else 'linear' for p, m, mask in zip(split_preds[frame_idx], split_matrs[frame_idx], split_masks[frame_idx]): p = cv2.resize(p, (512,512)) mask = cv2.resize(mask, (512,512)) if mask is not None else None m /= 0.25 whole_img = paste_to_whole(p, whole_img, m, mask=mask, crop_mask=crop_mask, blend_method=blend_method, blur_amount=blur_amount, erode_amount=erode_amount) cv2.imwrite(whole_img_path, whole_img) def concurrent_post_process(image_sequence, *args): with concurrent.futures.ThreadPoolExecutor() as executor: futures = [] for idx, frame_img in enumerate(image_sequence): future = executor.submit(post_process, idx, frame_img, *args) futures.append(future) for future in tqdm(concurrent.futures.as_completed(futures), total=len(futures), desc="Pasting back"): result = future.result() concurrent_post_process( image_sequence, split_preds, split_matrs, split_masks, enable_laplacian_blend, crop_mask, blur_amount, erode_amount ) ## ------------------------------ IMAGE ------------------------------ if input_type == "Image": target = cv2.imread(image_path) output_file = os.path.join(output_path, output_name + ".png") cv2.imwrite(output_file, target) for info_update in swap_process([output_file]): yield info_update OUTPUT_FILE = output_file WORKSPACE = output_path PREVIEW = cv2.imread(output_file)[:, :, ::-1] yield get_finsh_text(start_time), *ui_after() ## ------------------------------ VIDEO ------------------------------ elif input_type == "Video": temp_path = os.path.join(output_path, output_name, "sequence") os.makedirs(temp_path, exist_ok=True) yield "### \n 💽 Extracting video frames...", *ui_before() image_sequence = [] cap = cv2.VideoCapture(video_path) curr_idx = 0 while True: ret, frame = cap.read() if not ret:break frame_path = os.path.join(temp_path, f"frame_{curr_idx}.jpg") cv2.imwrite(frame_path, frame) image_sequence.append(frame_path) curr_idx += 1 cap.release() cv2.destroyAllWindows() for info_update in swap_process(image_sequence): yield info_update yield "### \n 🔗 Merging sequence...", *ui_before() output_video_path = os.path.join(output_path, output_name + ".mp4") merge_img_sequence_from_ref(video_path, image_sequence, output_video_path) if os.path.exists(temp_path) and not keep_output_sequence: yield "### \n 🚽 Removing temporary files...", *ui_before() shutil.rmtree(temp_path) WORKSPACE = output_path OUTPUT_FILE = output_video_path yield get_finsh_text(start_time), *ui_after_vid() ## ------------------------------ DIRECTORY ------------------------------ elif input_type == "Directory": extensions = ["jpg", "jpeg", "png", "bmp", "tiff", "ico", "webp"] temp_path = os.path.join(output_path, output_name) if os.path.exists(temp_path): shutil.rmtree(temp_path) os.mkdir(temp_path) file_paths =[] for file_path in glob.glob(os.path.join(directory_path, "*")): if any(file_path.lower().endswith(ext) for ext in extensions): img = cv2.imread(file_path) new_file_path = os.path.join(temp_path, os.path.basename(file_path)) cv2.imwrite(new_file_path, img) file_paths.append(new_file_path) for info_update in swap_process(file_paths): yield info_update PREVIEW = cv2.imread(file_paths[-1])[:, :, ::-1] WORKSPACE = temp_path OUTPUT_FILE = file_paths[-1] yield get_finsh_text(start_time), *ui_after() ## ------------------------------ STREAM ------------------------------ elif input_type == "Stream": pass ## ------------------------------ GRADIO FUNC ------------------------------ def update_radio(value): if value == "Image": return ( gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), ) elif value == "Video": return ( gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), ) elif value == "Directory": return ( gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), ) elif value == "Stream": return ( gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), ) def swap_option_changed(value): if value.startswith("Age"): return ( gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), ) elif value == "Specific Face": return ( gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), ) return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True) def video_changed(video_path): sliders_update = gr.Slider.update button_update = gr.Button.update number_update = gr.Number.update if video_path is None: return ( sliders_update(minimum=0, maximum=0, value=0), sliders_update(minimum=1, maximum=1, value=1), number_update(value=1), ) try: clip = VideoFileClip(video_path) fps = clip.fps total_frames = clip.reader.nframes clip.close() return ( sliders_update(minimum=0, maximum=total_frames, value=0, interactive=True), sliders_update( minimum=0, maximum=total_frames, value=total_frames, interactive=True ), number_update(value=fps), ) except: return ( sliders_update(value=0), sliders_update(value=0), number_update(value=1), ) def analyse_settings_changed(detect_condition, detection_size, detection_threshold): yield "### \n 💡 Applying new values..." global FACE_ANALYSER global DETECT_CONDITION DETECT_CONDITION = detect_condition FACE_ANALYSER = insightface.app.FaceAnalysis(name="buffalo_l", providers=PROVIDER) FACE_ANALYSER.prepare( ctx_id=0, det_size=(int(detection_size), int(detection_size)), det_thresh=float(detection_threshold), ) yield f"### \n ✔️ Applied detect condition:{detect_condition}, detection size: {detection_size}, detection threshold: {detection_threshold}" def stop_running(): global STREAMER if hasattr(STREAMER, "stop"): STREAMER.stop() STREAMER = None return "Cancelled" def slider_changed(show_frame, video_path, frame_index): if not show_frame: return None, None if video_path is None: return None, None clip = VideoFileClip(video_path) frame = clip.get_frame(frame_index / clip.fps) frame_array = np.array(frame) clip.close() return gr.Image.update(value=frame_array, visible=True), gr.Video.update( visible=False ) def trim_and_reload(video_path, output_path, output_name, start_frame, stop_frame): yield video_path, f"### \n 🛠️ Trimming video frame {start_frame} to {stop_frame}..." try: output_path = os.path.join(output_path, output_name) trimmed_video = trim_video(video_path, output_path, start_frame, stop_frame) yield trimmed_video, "### \n ✔️ Video trimmed and reloaded." except Exception as e: print(e) yield video_path, "### \n ❌ Video trimming failed. See console for more info." ## ------------------------------ GRADIO GUI ------------------------------ css = """ footer{display:none !important} """ with gr.Blocks(css=css) as interface: gr.Markdown("# 🧸 Deepfake Faceswap") gr.Markdown("### 👑 insightface inswapper!No more Fxx NSFW!Use freely!👑") with gr.Row(): with gr.Row(): with gr.Column(scale=0.4): with gr.Tab("⚖️ Swap Condition"): swap_option = gr.Dropdown( swap_options_list, info="Choose which face or faces in the target image to swap.", multiselect=False, show_label=False, value=swap_options_list[0], interactive=True, ) age = gr.Number( value=25, label="Value", interactive=True, visible=False ) with gr.Tab("🎛️ Detection Settings"): detect_condition_dropdown = gr.Dropdown( detect_conditions, label="Condition", value=DETECT_CONDITION, interactive=True, info="This condition is only used when multiple faces are detected on source or specific image.", ) detection_size = gr.Number( label="Detection Size", value=DETECT_SIZE, interactive=True ) detection_threshold = gr.Number( label="Detection Threshold", value=DETECT_THRESH, interactive=True, ) apply_detection_settings = gr.Button("Apply settings") with gr.Tab("♻️ Output Settings"): output_directory = gr.Text( label="Output Directory", value=DEF_OUTPUT_PATH, interactive=True, ) output_name = gr.Text( label="Output Name", value="Result", interactive=True ) keep_output_sequence = gr.Checkbox( label="Keep output sequence", value=False, interactive=True ) with gr.Tab("💎 Other Settings"): face_scale = gr.Slider( label="Face Scale", minimum=0, maximum=2, value=1, interactive=True, ) face_enhancer_name = gr.Dropdown( FACE_ENHANCER_LIST, label="Face Enhancer", value="NONE", multiselect=False, interactive=True ) with gr.Accordion("Advanced Mask", open=False): enable_face_parser_mask = gr.Checkbox( label="Enable Face Parsing", value=False, interactive=True, ) mask_include = gr.Dropdown( mask_regions.keys(), value=MASK_INCLUDE, multiselect=True, label="Include", interactive=True, ) mask_soft_kernel = gr.Number( label="Soft Erode Kernel", value=MASK_SOFT_KERNEL, minimum=3, interactive=True, visible = False ) mask_soft_iterations = gr.Number( label="Soft Erode Iterations", value=MASK_SOFT_ITERATIONS, minimum=0, interactive=True, ) with gr.Accordion("Crop Mask", open=False): crop_top = gr.Slider(label="Top", minimum=0, maximum=511, value=0, step=1, interactive=True) crop_bott = gr.Slider(label="Bottom", minimum=0, maximum=511, value=511, step=1, interactive=True) crop_left = gr.Slider(label="Left", minimum=0, maximum=511, value=0, step=1, interactive=True) crop_right = gr.Slider(label="Right", minimum=0, maximum=511, value=511, step=1, interactive=True) erode_amount = gr.Slider( label="Mask Erode", minimum=0, maximum=1, value=MASK_ERODE_AMOUNT, step=0.05, interactive=True, ) blur_amount = gr.Slider( label="Mask Blur", minimum=0, maximum=1, value=MASK_BLUR_AMOUNT, step=0.05, interactive=True, ) enable_laplacian_blend = gr.Checkbox( label="Laplacian Blending", value=True, interactive=True, ) source_image_input = gr.Image( label="Source face", type="filepath", interactive=True ) with gr.Box(visible=False) as specific_face: for i in range(NUM_OF_SRC_SPECIFIC): idx = i + 1 code = "\n" code += f"with gr.Tab(label='({idx})'):" code += "\n\twith gr.Row():" code += f"\n\t\tsrc{idx} = gr.Image(interactive=True, type='numpy', label='Source Face {idx}')" code += f"\n\t\ttrg{idx} = gr.Image(interactive=True, type='numpy', label='Specific Face {idx}')" exec(code) distance_slider = gr.Slider( minimum=0, maximum=2, value=0.6, interactive=True, label="Distance", info="Lower distance is more similar and higher distance is less similar to the target face.", ) with gr.Group(): input_type = gr.Radio( ["Image", "Video"], label="Target Type", value="Image", ) with gr.Group(visible=True) as input_image_group: image_input = gr.Image( label="Target Image", interactive=True, type="filepath" ) with gr.Group(visible=False) as input_video_group: vid_widget = gr.Video if USE_COLAB else gr.Text video_input = gr.Video( label="Target Video", interactive=True ) with gr.Accordion("🎨 Trim video", open=False): with gr.Column(): with gr.Row(): set_slider_range_btn = gr.Button( "Set frame range", interactive=True ) show_trim_preview_btn = gr.Checkbox( label="Show frame when slider change", value=True, interactive=True, ) video_fps = gr.Number( value=30, interactive=False, label="Fps", visible=False, ) start_frame = gr.Slider( minimum=0, maximum=1, value=0, step=1, interactive=True, label="Start Frame", info="", ) end_frame = gr.Slider( minimum=0, maximum=1, value=1, step=1, interactive=True, label="End Frame", info="", ) trim_and_reload_btn = gr.Button( "Trim and Reload", interactive=True ) with gr.Box(visible=False) as input_directory_group: direc_input = gr.Text(label="Path", interactive=True) with gr.Column(scale=0.6): info = gr.Markdown(value="...") with gr.Row(): swap_button = gr.Button("🎯 Swap", variant="primary") cancel_button = gr.Button("❌ Cancel") preview_image = gr.Image(label="Output", interactive=False) preview_video = gr.Video( label="Output", interactive=False, visible=False ) with gr.Row(): output_directory_button = gr.Button( "💌", interactive=False, visible=False ) output_video_button = gr.Button( "📽️", interactive=False, visible=False ) with gr.Box(): with gr.Row(): gr.Markdown( "### [🎭 Sponsor]" ) gr.Markdown( "### [🖥️ Source code](https://huggingface.co/spaces/victorisgeek/SwapFace2Pon)" ) gr.Markdown( "### [ 🧩 Playground](https://huggingface.co/spaces/victorisgeek/SwapFace2Pon)" ) gr.Markdown( "### [📸 Run in Colab](https://colab.research.google.com/github/victorgeel/FaceSwapNoNfsw/blob/main/SwapFace.ipynb)" ) gr.Markdown( "### [🤗 Modified Version](https://github.com/victorgeel/FaceSwapNoNfsw)" ) ## ------------------------------ GRADIO EVENTS ------------------------------ set_slider_range_event = set_slider_range_btn.click( video_changed, inputs=[video_input], outputs=[start_frame, end_frame, video_fps], ) trim_and_reload_event = trim_and_reload_btn.click( fn=trim_and_reload, inputs=[video_input, output_directory, output_name, start_frame, end_frame], outputs=[video_input, info], ) start_frame_event = start_frame.release( fn=slider_changed, inputs=[show_trim_preview_btn, video_input, start_frame], outputs=[preview_image, preview_video], show_progress=True, ) end_frame_event = end_frame.release( fn=slider_changed, inputs=[show_trim_preview_btn, video_input, end_frame], outputs=[preview_image, preview_video], show_progress=True, ) input_type.change( update_radio, inputs=[input_type], outputs=[input_image_group, input_video_group, input_directory_group], ) swap_option.change( swap_option_changed, inputs=[swap_option], outputs=[age, specific_face, source_image_input], ) apply_detection_settings.click( analyse_settings_changed, inputs=[detect_condition_dropdown, detection_size, detection_threshold], outputs=[info], ) src_specific_inputs = [] gen_variable_txt = ",".join( [f"src{i+1}" for i in range(NUM_OF_SRC_SPECIFIC)] + [f"trg{i+1}" for i in range(NUM_OF_SRC_SPECIFIC)] ) exec(f"src_specific_inputs = ({gen_variable_txt})") swap_inputs = [ input_type, image_input, video_input, direc_input, source_image_input, output_directory, output_name, keep_output_sequence, swap_option, age, distance_slider, face_enhancer_name, enable_face_parser_mask, mask_include, mask_soft_kernel, mask_soft_iterations, blur_amount, erode_amount, face_scale, enable_laplacian_blend, crop_top, crop_bott, crop_left, crop_right, *src_specific_inputs, ] swap_outputs = [ info, preview_image, output_directory_button, output_video_button, preview_video, ] swap_event = swap_button.click( fn=process, inputs=swap_inputs, outputs=swap_outputs, show_progress=True ) cancel_button.click( fn=stop_running, inputs=None, outputs=[info], cancels=[ swap_event, trim_and_reload_event, set_slider_range_event, start_frame_event, end_frame_event, ], show_progress=True, ) output_directory_button.click( lambda: open_directory(path=WORKSPACE), inputs=None, outputs=None ) output_video_button.click( lambda: open_directory(path=OUTPUT_FILE), inputs=None, outputs=None ) if __name__ == "__main__": if USE_COLAB: print("Running in colab mode") interface.launch(concurrency_count=2, max_size=10).launch(share=USE_COLAB)