# based on https://huggingface.co/spaces/NimaBoscarino/climategan/blob/main/app.py # noqa: E501 # thank you @NimaBoscarino import os from textwrap import dedent from urllib import parse import googlemaps import gradio as gr import numpy as np from gradio.components import ( HTML, Button, Column, Dropdown, Image, Markdown, Radio, Row, Textbox, ) from skimage import io from climategan_wrapper import ClimateGAN HTMLS = [ dedent( """

Climate change does not impact everyone equally. This Space shows the effects of the climate emergency, "one address at a time".

Visit the original experience at ThisClimateDoesNotExist.com


Enter an address or upload a Street View image, and ClimateGAN will generate images showing how the location could be impacted by flooding, wildfires, or smog if it happened there.


This is not an exercise in climate prediction, rather an exercise of empathy, to put yourself in other's shoes, as if Climate Change came crushing on your doorstep.

""" ), dedent( """



Visit ThisClimateDoesNotExist.com for more information   |   Original ClimateGAN GitHub Repo


After you have selected an image and started the inference you will see all the outputs of ClimateGAN, including intermediate outputs such as the flood mask, the segmentation map and the depth maps used to produce the 3 events.


This Space makes use of recent Stable Diffusion in-painting pipelines to replace ClimateGAN's original Painter. If you select 'Both' painters, you will see a comparison



Read the original ICLR 2021 ClimateGAN paper

""" ), ] CSS = dedent( """ a { color: #0088ff; text-decoration: underline; } strong { color: #c34318; } """ ) def toggle(radio): if "address" in radio.lower(): return [ gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), ] else: return [ gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), ] def predict(cg: ClimateGAN, api_key): def _predict(*args): image = place = painter = radio = None if api_key: radio, image, place, painter = args else: image, painter = args if api_key and place and "address" in radio.lower(): geocode_result = gmaps.geocode(place) address = geocode_result[0]["formatted_address"] static_map_url = f"https://maps.googleapis.com/maps/api/streetview?size=640x640&location={parse.quote(address)}&source=outdoor&key={api_key}" img_np = io.imread(static_map_url) else: img_np = image painters = { "ClimateGAN Painter": "climategan", "Stable Diffusion Painter": "stable_diffusion", "Both": "both", } output_dict = cg.infer_single(img_np, painters[painter], as_pil_image=True) input_image = output_dict["input"] masked_input = output_dict["masked_input"] wildfire = output_dict["wildfire"] smog = output_dict["smog"] depth = np.repeat(output_dict["depth"], 3, axis=-1) segmentation = output_dict["segmentation"] climategan_flood = output_dict.get( "climategan_flood", np.ones(input_image.shape, dtype=np.uint8) * 255, ) stable_flood = output_dict.get( "stable_flood", np.ones(input_image.shape, dtype=np.uint8) * 255, ) stable_copy_flood = output_dict.get( "stable_copy_flood", np.ones(input_image.shape, dtype=np.uint8) * 255, ) concat = output_dict.get( "concat", np.ones(input_image.shape, dtype=np.uint8) * 255, ) return ( input_image, masked_input, segmentation, depth, climategan_flood, stable_flood, stable_copy_flood, concat, wildfire, smog, ) return _predict if __name__ == "__main__": api_key = os.environ.get("GMAPS_API_KEY") gmaps = None if api_key is not None: gmaps = googlemaps.Client(key=api_key) cg = ClimateGAN( model_path="config/model/masker", dev_mode=os.environ.get("CG_DEV_MODE", "").lower() == "true", ) cg._setup_stable_diffusion() radio = address = None pred_ins = [] pred_outs = [] with gr.Blocks(css=CSS) as app: with Row(): with Column(): Markdown("# ClimateGAN: Visualize Climate Change") HTML(HTMLS[0]) with Column(): HTML(HTMLS[1]) with Row(): Markdown("## Inputs") with Row(): with Column(): if api_key: radio = Radio(["From Address", "From Image"], label="Input Type") pred_ins += [radio] im_inp = Image(label="Input Image", visible=not api_key) pred_ins += [im_inp] if api_key: address = Textbox(label="Address or place name", visible=False) pred_ins += [address] with Column(): pred_ins += [ Dropdown( choices=[ "ClimateGAN Painter", "Stable Diffusion Painter", "Both", ], label="Choose Flood Painter", value="Both", ) ] btn = Button( "See for yourself!", label="Run", variant="primary", visible=not api_key, ) with Row(): Markdown("## Outputs") with Row(): pred_outs += [Image(type="numpy", label="Original image")] pred_outs += [Image(type="numpy", label="Masked input image")] pred_outs += [Image(type="numpy", label="Segmentation map")] pred_outs += [Image(type="numpy", label="Depth map")] with Row(): pred_outs += [Image(type="numpy", label="ClimateGAN-Flooded image")] pred_outs += [Image(type="numpy", label="Stable Diffusion-Flooded image")] pred_outs += [ Image( type="numpy", label="Stable Diffusion-Flooded image (restricted to masked area)", ) ] with Row(): pred_outs += [Image(type="numpy", label="Comparison of flood images")] with Row(): pred_outs += [Image(type="numpy", label="Wildfire")] pred_outs += [Image(type="numpy", label="Smog")] Image(type="numpy", label="Empty on purpose", interactive=False) btn.click(predict(cg, api_key), inputs=pred_ins, outputs=pred_outs) if api_key: radio.change(toggle, inputs=[radio], outputs=[address, im_inp, btn]) app.launch()