File size: 12,098 Bytes
ce190ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
"""File for all blocks which are parts of decoders
"""
import torch
import torch.nn as nn
import torch.nn.functional as F

import climategan.strings as strings
from climategan.norms import SPADE, AdaptiveInstanceNorm2d, LayerNorm, SpectralNorm


class InterpolateNearest2d(nn.Module):
    """
    Custom implementation of nn.Upsample because pytorch/xla
    does not yet support scale_factor and needs to be provided with
    the output_size
    """

    def __init__(self, scale_factor=2):
        """
        Create an InterpolateNearest2d module

        Args:
            scale_factor (int, optional): Output size multiplier. Defaults to 2.
        """
        super().__init__()
        self.scale_factor = scale_factor

    def forward(self, x):
        """
        Interpolate x in "nearest" mode on its last 2 dimensions

        Args:
            x (torch.Tensor): input to interpolate

        Returns:
            torch.Tensor: upsampled tensor with shape
                (...x.shape, x.shape[-2] * scale_factor, x.shape[-1] * scale_factor)
        """
        return F.interpolate(
            x,
            size=(x.shape[-2] * self.scale_factor, x.shape[-1] * self.scale_factor),
            mode="nearest",
        )


# -----------------------------------------
# -----  Generic Convolutional Block  -----
# -----------------------------------------
class Conv2dBlock(nn.Module):
    def __init__(
        self,
        input_dim,
        output_dim,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        norm="none",
        activation="relu",
        pad_type="zero",
        bias=True,
    ):
        super().__init__()
        self.use_bias = bias
        # initialize padding
        if pad_type == "reflect":
            self.pad = nn.ReflectionPad2d(padding)
        elif pad_type == "replicate":
            self.pad = nn.ReplicationPad2d(padding)
        elif pad_type == "zero":
            self.pad = nn.ZeroPad2d(padding)
        else:
            assert 0, "Unsupported padding type: {}".format(pad_type)

        # initialize normalization
        use_spectral_norm = False
        if norm.startswith("spectral_"):
            norm = norm.replace("spectral_", "")
            use_spectral_norm = True

        norm_dim = output_dim
        if norm == "batch":
            self.norm = nn.BatchNorm2d(norm_dim)
        elif norm == "instance":
            # self.norm = nn.InstanceNorm2d(norm_dim, track_running_stats=True)
            self.norm = nn.InstanceNorm2d(norm_dim)
        elif norm == "layer":
            self.norm = LayerNorm(norm_dim)
        elif norm == "adain":
            self.norm = AdaptiveInstanceNorm2d(norm_dim)
        elif norm == "spectral" or norm.startswith("spectral_"):
            self.norm = None  # dealt with later in the code
        elif norm == "none":
            self.norm = None
        else:
            raise ValueError("Unsupported normalization: {}".format(norm))

        # initialize activation
        if activation == "relu":
            self.activation = nn.ReLU(inplace=False)
        elif activation == "lrelu":
            self.activation = nn.LeakyReLU(0.2, inplace=False)
        elif activation == "prelu":
            self.activation = nn.PReLU()
        elif activation == "selu":
            self.activation = nn.SELU(inplace=False)
        elif activation == "tanh":
            self.activation = nn.Tanh()
        elif activation == "sigmoid":
            self.activation = nn.Sigmoid()
        elif activation == "none":
            self.activation = None
        else:
            raise ValueError("Unsupported activation: {}".format(activation))

        # initialize convolution
        if norm == "spectral" or use_spectral_norm:
            self.conv = SpectralNorm(
                nn.Conv2d(
                    input_dim,
                    output_dim,
                    kernel_size,
                    stride,
                    dilation=dilation,
                    bias=self.use_bias,
                )
            )
        else:
            self.conv = nn.Conv2d(
                input_dim,
                output_dim,
                kernel_size,
                stride,
                dilation=dilation,
                bias=self.use_bias if norm != "batch" else False,
            )

    def forward(self, x):
        x = self.conv(self.pad(x))
        if self.norm is not None:
            x = self.norm(x)
        if self.activation is not None:
            x = self.activation(x)
        return x

    def __str__(self):
        return strings.conv2dblock(self)


# -----------------------------
# -----  Residual Blocks  -----
# -----------------------------
class ResBlocks(nn.Module):
    """
    From https://github.com/NVlabs/MUNIT/blob/master/networks.py
    """

    def __init__(self, num_blocks, dim, norm="in", activation="relu", pad_type="zero"):
        super().__init__()
        self.model = nn.Sequential(
            *[
                ResBlock(dim, norm=norm, activation=activation, pad_type=pad_type)
                for _ in range(num_blocks)
            ]
        )

    def forward(self, x):
        return self.model(x)

    def __str__(self):
        return strings.resblocks(self)


class ResBlock(nn.Module):
    def __init__(self, dim, norm="in", activation="relu", pad_type="zero"):
        super().__init__()
        self.dim = dim
        self.norm = norm
        self.activation = activation
        model = []
        model += [
            Conv2dBlock(
                dim, dim, 3, 1, 1, norm=norm, activation=activation, pad_type=pad_type
            )
        ]
        model += [
            Conv2dBlock(
                dim, dim, 3, 1, 1, norm=norm, activation="none", pad_type=pad_type
            )
        ]
        self.model = nn.Sequential(*model)

    def forward(self, x):
        residual = x
        out = self.model(x)
        out += residual
        return out

    def __str__(self):
        return strings.resblock(self)


# --------------------------
# -----  Base Decoder  -----
# --------------------------
class BaseDecoder(nn.Module):
    def __init__(
        self,
        n_upsample=4,
        n_res=4,
        input_dim=2048,
        proj_dim=64,
        output_dim=3,
        norm="batch",
        activ="relu",
        pad_type="zero",
        output_activ="tanh",
        low_level_feats_dim=-1,
        use_dada=False,
    ):
        super().__init__()

        self.low_level_feats_dim = low_level_feats_dim
        self.use_dada = use_dada

        self.model = []
        if proj_dim != -1:
            self.proj_conv = Conv2dBlock(
                input_dim, proj_dim, 1, 1, 0, norm=norm, activation=activ
            )
        else:
            self.proj_conv = None
            proj_dim = input_dim

        if low_level_feats_dim > 0:
            self.low_level_conv = Conv2dBlock(
                input_dim=low_level_feats_dim,
                output_dim=proj_dim,
                kernel_size=3,
                stride=1,
                padding=1,
                pad_type=pad_type,
                norm=norm,
                activation=activ,
            )
            self.merge_feats_conv = Conv2dBlock(
                input_dim=2 * proj_dim,
                output_dim=proj_dim,
                kernel_size=1,
                stride=1,
                padding=0,
                pad_type=pad_type,
                norm=norm,
                activation=activ,
            )
        else:
            self.low_level_conv = None

        self.model += [ResBlocks(n_res, proj_dim, norm, activ, pad_type=pad_type)]
        dim = proj_dim
        # upsampling blocks
        for i in range(n_upsample):
            self.model += [
                InterpolateNearest2d(scale_factor=2),
                Conv2dBlock(
                    input_dim=dim,
                    output_dim=dim // 2,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    pad_type=pad_type,
                    norm=norm,
                    activation=activ,
                ),
            ]
            dim //= 2
        # use reflection padding in the last conv layer
        self.model += [
            Conv2dBlock(
                input_dim=dim,
                output_dim=output_dim,
                kernel_size=3,
                stride=1,
                padding=1,
                pad_type=pad_type,
                norm="none",
                activation=output_activ,
            )
        ]
        self.model = nn.Sequential(*self.model)

    def forward(self, z, cond=None, z_depth=None):
        low_level_feat = None
        if isinstance(z, (list, tuple)):
            if self.low_level_conv is None:
                z = z[0]
            else:
                z, low_level_feat = z
                low_level_feat = self.low_level_conv(low_level_feat)
                low_level_feat = F.interpolate(
                    low_level_feat, size=z.shape[-2:], mode="bilinear"
                )

        if z_depth is not None and self.use_dada:
            z = z * z_depth

        if self.proj_conv is not None:
            z = self.proj_conv(z)

        if low_level_feat is not None:
            z = self.merge_feats_conv(torch.cat([low_level_feat, z], dim=1))

        return self.model(z)

    def __str__(self):
        return strings.basedecoder(self)


# --------------------------
# -----  SPADE Blocks  -----
# --------------------------
# https://github.com/NVlabs/SPADE/blob/0ff661e70131c9b85091d11a66e019c0f2062d4c
# /models/networks/generator.py
# 0ff661e on 13 Apr 2019
class SPADEResnetBlock(nn.Module):
    def __init__(
        self,
        fin,
        fout,
        cond_nc,
        spade_use_spectral_norm,
        spade_param_free_norm,
        spade_kernel_size,
        last_activation=None,
    ):
        super().__init__()
        # Attributes

        self.fin = fin
        self.fout = fout
        self.use_spectral_norm = spade_use_spectral_norm
        self.param_free_norm = spade_param_free_norm
        self.kernel_size = spade_kernel_size

        self.learned_shortcut = fin != fout
        self.last_activation = last_activation
        fmiddle = min(fin, fout)

        # create conv layers
        self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=1)
        self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=1)
        if self.learned_shortcut:
            self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False)

        # apply spectral norm if specified
        if spade_use_spectral_norm:
            self.conv_0 = SpectralNorm(self.conv_0)
            self.conv_1 = SpectralNorm(self.conv_1)
            if self.learned_shortcut:
                self.conv_s = SpectralNorm(self.conv_s)

        self.norm_0 = SPADE(spade_param_free_norm, spade_kernel_size, fin, cond_nc)
        self.norm_1 = SPADE(spade_param_free_norm, spade_kernel_size, fmiddle, cond_nc)
        if self.learned_shortcut:
            self.norm_s = SPADE(spade_param_free_norm, spade_kernel_size, fin, cond_nc)

    # note the resnet block with SPADE also takes in |seg|,
    # the semantic segmentation map as input
    def forward(self, x, seg):
        x_s = self.shortcut(x, seg)

        dx = self.conv_0(self.activation(self.norm_0(x, seg)))
        dx = self.conv_1(self.activation(self.norm_1(dx, seg)))

        out = x_s + dx
        if self.last_activation == "lrelu":
            return self.activation(out)
        elif self.last_activation is None:
            return out
        else:
            raise NotImplementedError(
                "The type of activation is not supported: {}".format(
                    self.last_activation
                )
            )

    def shortcut(self, x, seg):
        if self.learned_shortcut:
            x_s = self.conv_s(self.norm_s(x, seg))
        else:
            x_s = x
        return x_s

    def activation(self, x):
        return F.leaky_relu(x, 2e-1)

    def __str__(self):
        return strings.spaderesblock(self)