import tensorflow as tf from tensorflow.keras import models, layers import gradio as gr import numpy as np # Define and name the model bat_classifier_model = models.Sequential(name="BatClassifier") bat_classifier_model.add(layers.Conv2D(20, (5,5), activation='relu', input_shape=(232, 154, 3))) bat_classifier_model.add(layers.Dropout(0.2)) bat_classifier_model.add(layers.Conv2D(20, (5,5), activation='relu')) bat_classifier_model.add(layers.Dropout(0.2)) bat_classifier_model.add(layers.MaxPooling2D(3,3)) bat_classifier_model.add(layers.Conv2D(20, (5,5), activation='relu')) bat_classifier_model.add(layers.Dropout(0.2)) bat_classifier_model.add(layers.Conv2D(10, (5,5), activation='relu')) bat_classifier_model.add(layers.Dropout(0.2)) bat_classifier_model.add(layers.MaxPooling2D(3,3)) bat_classifier_model.add(layers.Flatten()) bat_classifier_model.add(layers.Dense(4, activation='softmax')) optimizer = tf.keras.optimizers.Adam(learning_rate=0.02) bat_classifier_model.compile(optimizer=optimizer, loss='mse', metrics=['accuracy']) # Load the saved model bat_classifier_model = tf.keras.models.load_model("bat_classifier_model") # Preprocess the image def preprocess_image(image): processed_image = np.expand_dims(image, axis=0) return processed_image # Gradio interface function def classify_bat(image): processed_image = preprocess_image(image) prediction = bat_classifier_model.predict(processed_image)[0] class_names = ["Pipistrellus pygmaus", "Noctula nyctalus "] return {class_names[i]: float(prediction[i]) for i in range(len(class_names))} inputs = gr.inputs.Image(label="Upload an image") outputs = gr.outputs.Label(num_top_classes=2, label="Classification") gr.Interface(fn=classify_bat, inputs=inputs, outputs=outputs).launch()